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ABssTRACT: Generative adversarial networks (GAN) opened new possibilities for image processing and analysis. In-
painting, dataset augmentation using artificial samples, or increasing spatial resolution of aerial imagery are only a
few notable examples of utilising GANs in remote sensing (RS). The normalised difference vegetation index (NDVI)
ground-truth labels were prepared by combining RGB and NIR orthophotos. The dataset was then utilised as input
for a conditional generative adversarial network (cGAN) to perform an image-to-image translation. The main goal of
the neural network was to generate an artificial NDVI image for each processed 256 px x 256 px patch using only in-
formation available in the panchromatic input. The network achieved a structural similarity index measure (SSIM) of
0.7569 + 0.1083, a peak signal-to-noise ratio (PSNR) of 26.6459 * 3.6577 and a root-mean-square error (RSME) of 0.0504
1 0.0193 on the test set, which should be considered high. The perceptual evaluation was performed to verify the meth-
od’s usability when working with a real-life scenario. The research confirms that the structure and texture of the pan-
chromatic aerial RS image contain sufficient information for NDVI estimation for various objects of urban space. Even
though these results can highlight areas rich in vegetation and distinguish them from the urban background, there is
still room for improvement regarding the accuracy of the estimated values. The research aims to explore the possibility
of utilising GAN to enhance panchromatic images (PAN) with information related to vegetation. This opens exciting
opportunities for historical RS imagery processing and analysis.
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Introduction

The normalised difference vegetation index
(NDVI) is a metric that stores information per-
taining to the degree of vegetation. Due to its
characteristics, it is used in many research ac-
tivities and remote-sensing (RS) measurements
(Deering 1978, Jackson, Huete 1991). The main
feature of the NDVlI is that it directly depends on
the quantity and quality of the vegetation in the

§ sciendo

selected area (Jarociriska, Zagajewski 2008). NDVI
is widely recognised as a metric of vegetation vi-
tality. It has a wide range of applications from
vegetation cover segmentation (Tomaszewska et
al. 2011), biomass estimation (Tucker 1979), crop
maturity classification (Hatfield, Prueger 2010,
Tuszynska et al. 2018), water stress detection
(Hunt, Rock 1989, Jackson et al. 2004; Gu et al.
2007), nitrogen content indication (Bagheri et al.
2013), chlorophyll content estimation and yield
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estimation (Turlej 2009, Sultana et al. 2014), to de-
tection of disease and the effects of pest infesta-
tion (Chew et al. 2014) and more. NDVI can help
in determining the size and changes of vegetation
resources, mainly woody, and further in estimat-
ing changes of ecosystem services provided by
trees (Nowak, Greenfield 2012, Kuang, Dou 2020,
Zieba-Kulawik et al. 2021), including the increas-
ingly important effect of cooling the city through
shading (Li, Ratti 2018, McPherson et al. 2018).

The NDVI can be used in analysing both aerial
and satellite imagery in different scales, from sin-
gle plants to global vegetation zones. The index
is calculated by taking the spectral reflectance of
near-infrared and red spectral bands of the image
and applying the following formula (Rouse et al.
1973):

NIR - Red
NDVI= IR + Red @

where NIR and RED are the spectral reflectance
of near-infrared and red bands, respectively.
NDVI is a number between -1 and 1, where high-
er values indicate denser vegetation canopy. To
distinguish areas covered by vegetation from
other areas, a threshold value is needed. There
is no universal approach for setting the thresh-
old. Therefore, it must be carefully adapted to the
type of imaging system, natural conditions, type
of vegetation and seasonality. Table 1 presents

thresholds utilised in recent research projects re-
lated to urban areas conducted in Poland.

In RS, the multitude of uses of aerial or sat-
ellite imagery in classification tasks is directly
related to image textural features, originally in-
troduced by Haralick et al. (1973). The textural
features concept is described as the spatial re-
lationships between pixels of a given spectral
band or several bands that enable discrimination
between objects represented on the analysed im-
age (Li et al. 2009). Texture parameters form the
basis of the object-based image analysis (OBIA).
As practice has shown, utilising textural features
in different forms helps in accomplishing vari-
ous tasks in the field of photogrammetry and RS.
When combined with information acquired by
calculating NDVI, textural features can serve as
input for methods capable of detecting and seg-
menting vegetation in cities (Zhang 2001, Herold
et al. 2003, Li et al. 2009, Marmol, Lenda 2010,
Barley, Town 2014, Pyra, Adamczyk 2018).

Although it is uncommon for contemporary
imagery not to contain NIR, there are multiple
examples of aerial imagery originating from ar-
chive data sources that store only RGB or pan-
chromatic, i.e. greyscale images. Obtaining in-
formation regarding vegetation, in this case, is
difficult and associated with the need to estimate
the NIR band.

Fortunately, there are successful attempts to
create artificial spectral bands based solely on

Table 1. Normalised difference vegetation index threshold values used in urban studies in Poland.

NDVI Research
Thresholld for Image data used area References
vegetation

0.3 Landsat TM, GSD 30 m, 3 Jul. 2006 Warsaw | Tomaszewska et al. (2011)

0.1 MODIS, GSD 250 m, 3 Jul. 2006 Warsaw | Tomaszewska et al. (2011)

0.1 Digital orthophoto, GSD 0.1 m, May 2014 Wroclaw | Kubalska and Preuss (2014)

0.2 IKONOS-2, GSD 1(4) m, 18 Aug. 2005 Lublin Krukowski et al. (2016)

0.2 Landsat 8, GSD 30 m, 3 Jul. 2015 Lodz Bedkowski and Bielecki

(2017)
0.1 Pléiades 1A, GSD 0.5 m, May 2012 Warsaw | Pyra and Adamczyk (2018)
0.1 CIR-orthophoto, GSD 0.25 m, 2015 Lodz Pluto-Kossakowska et al.
(2018)

0.2 IKONOS-2, GSD 1(4) m, 18 Aug. 2011 Lublin Krukowski (2018)

0.1 CIR aerial orthophoto, GSD 0.25 m, 2015 Lodz Worm et al. (2019)

0.6 Sentinel 2, GSD 10 m, summer 2018, 2019 Poland Lachowski and Leczek

(2020)

0.2 IKONOS-2, June 2005, GSD = 0.8 m PAN (3.2 m MS) Poland | Zieba-Kulawik and Wezyk
QuickBird-2, September 2006, GSD = 0.6 m PAN (2.4 m MS) (2022)
WorldView-2, October 2014, GSD = 0.5 m PAN (2.0 m MS)

Aerial orthophotomap (CIR), May 2017, GSD = 0.25 m
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the available bands. Recent research activities
focus on utilising generative neural network
models by treating the estimation of a spectral
band as an image-to-image translation task. This
supervised machine learning task is to discov-
er a transformation between real input spectral
bands and ground truth output. Once learned,
the conversion can be used to process real input
and produce an artificial but realistic output. The
output is being produced conditionally, i.e. it is
influenced by the input composition regarding
the learned transformation. A good candidate
among multiple available neural network archi-
tectures to tackle the image-to-image translation
task is the conditional generative adversarial
network (cGAN). The use of cGAN for spectral
bands estimation is justified in cases in which the
input and output bands have little or no over-
lap. Therefore, acquiring the transformation is
non-trivial. This is also a significant advantage of
cGAN over the direct use of a convolution neural
networks (CNN)-based regressor. Without the
support of the discriminator mechanism offered
by GAN networks, CNNs may have problems
obtaining the desired result without crafting a
fine-tailored loss function. In other words, cGAN
not only learns the transformation from the input
image to the output image but also learns a loss
function to train this mapping (Isola et al. 2017).
Contemporary research provides the basis for
obtaining the answer regarding the possibility of
NDVI estimation from RGB and panchromatic
images. For example, Sudrez et al. (2017) proposed
using a cGAN approach in NDVI estimation. The
proposed method allows the creation of an NDVI
image based only on a single spectral band, which
is near-infrared (NIR). Three network architec-
tures were tested with gradually increasing com-
plexity. The generative model was trained from
a near-infrared image plus Gaussian noise. The
network was trained on a large number (280,000)
of pairs of patches (64 px x 64 px) of download-
ed NIR images and corresponding NDVI imag-
es. In the validation phase, the result was com-
pared with the proper NDVI calculated using the
classical formula from the RGB and NIR bands.
The research showed a high agreement of both
NDVI ground truth calculated using RGB and
CIR-orthophoto images and NDVI synthesised.
Suédrez et al. (2019) proposed GAN for NDVI es-
timation based on grayscale images made from

three-band RGB images. Importantly, RGB/CIR
images that were not registered were not direct-
ly used in the training process. A grayscale im-
age derived from RGB was used. The procedure
led to an efficient estimation of the synthetic NIR
band, which was then used to calculate the NDVI
according to the classical formula expressed in
Eq. (1). As stated, the proposed model effectively
translates the images from the visible spectrum to
NIR and NDVI. Aslahishahri et al. (2021) used the
c¢GAN and confirmed the possibility of generat-
ing the NIR band, which is useful for examining
the condition of crops (canola, lentil, dry bean
and wheat) from RGB images. The training sets
included 256 px x 256 px patches of RGB images
and their corresponding NIR images acquired us-
ing a unmanned aerial vehicle (UAV). The trained
network was able to synthesise the NIR band,
from which the NDVI was then derived.

This research aims to check the feasibility of
using the generative adversarial approach to
direct NDVI estimation using information ex-
clusively from structural and textural analyses
of panchromatic orthoimagery by skipping the
intermediate NIR generation step. The authors
assume that NDVI is strongly associated with
certain structures and textures of a single-band
panchromatic image and can therefore be de-
termined with precision appropriate for some
limited practical purposes. The novelty of this
approach when applied to aerial and satellite
imagery is that it allows enhancing datasets that
did not contain information regarding vegetation
with a surrogate channel. This opens the possi-
bility to reuse previously collected data in new
research scenarios, such as using archived aerial
imagery — that was acquired with the aid of tech-
nology prevalent in the pre-digital era—in RS.

Generative adversarial network

Generative adversarial networks (GANs) are
neural networks characterised by a unique con-
struction. GAN is composed of at least a single
generator and accompanying discriminator.
The role of the generator is to synthesise realis-
tic results, while the discriminator must assess
how close the generator output is to reality. By
applying the discriminator judgement, the gen-
erator can iteratively improve its performance.
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Therefore, the main goal of these two networks
is to compete in the form of a two-player mini-
max game, in which the generator tries to fool the
discriminator (Salimans et al. 2016). More com-
plex GANs are also known. They are built from
multiple different subnetworks and frequently
possess more than one instance of a single sub-
net type. A notable example is bidirectional GAN
(BigBiGAN), which consists of a generator, three
distinct discriminators and an encoder that can
represent the image as a lower-dimensional vec-
tor (Donahue, Simonyan 2019).

Exploiting the results of the duel between dif-
ferent GAN components opens interesting op-
portunities both for computer vision (CV) and
RS activities. Due to their versatility, GANs are
applicable to a wide variety of settings, such as
unsupervised semantic segmentation, condition-
al artificial image preparation, inpainting or style
transfer (Demir, Unal 2018, Dong et al. 2019). It is
a common practice to extract a trained and fine-
tuned GANs subnet to apply it to solve a certain
research problem. Frequently, the generator is
the target of such a procedure but there are also

19°20'0"E 19°24'0'E

cases of using only the encoder (Adamiak et al.
2021). The model architecture complexity is also
a reason for multiple problems that one must face
when training a GAN: vanishing gradient, mode
collapse and convergence failure are the most
common.

In the study, a simple yet powerful GAN ar-
chitecture has been chosen as a baseline. Pix2Pix
is a generator-discriminator network capable of
conditional output creation. This makes it a var-
iant of a cGAN (Mirza, Osindero 2014). Pix2Pix
is a general-purpose solution to image-to-image
translation problems, i.e. creating a mapping be-
tween input image x and output image y (Isola et
al. 2018).

Materials and methods

Research area

1.6dz is a city located in central Poland, on the
L6dz Upland, at an altitude of 162-278 m above
sea level (Fig. 1). It is the third-largest city in the
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Fig. 1. Research area, based on the data from the Head Office of Geodesy and Cartography (Land and Building
Records).
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country in terms of population, with approxi-
mately 668,000 inhabitants.

In 1823, the city entered the phase of dynamic
population and territorial development, which
was related to the dynamic growth of the textile
industry. In later years, large enterprises were es-
tablished, employing huge numbers of workers,
and the production of woollen, linen and cotton
products was started. At that time, a character-
istic strip-like spatial form of the urban layout
of £L6dz was formed (Barwiriski 2009). The years
1860-1890 were the period of the most intensive
industrial development. The city became the larg-
est centre of the textile industry in the Kingdom
of Poland. Industrial buildings were mixed with
residential ones. Colonies of houses for workers
intertwined with factories and with factory own-
ers’ residences, which affects the image of the city
to this day.

The city is situated between watersheds of the
Vistula and Oder rivers. Although 18 rivers and
streams flow within the city, none significantly
affect the city’s physiognomy. There are no lakes
or other larger bodies of water. Urban green are-
as - parks, lawns, estate green belts, a zoological
garden, a botanical garden, nature reserves and
landscape parks - cover 16.62 km?and constitute
5.67% of the city’s area. Within the borders of
16dz, there is the largest area of urban forests in
the country, amounting to 8.9% of the city area
(Statistics Poland 2020).

The remote-sensing image of the city shows
compact housing complexes, mainly from the
years 1870-1914, constituting the largest com-
plex of Art Nouveau architecture in the coun-
try. Workers” housing estates, villa complexes,
large housing estates with high buildings in the
form of blocks, industrial and commercial facil-
ities, communication areas, roads and railroads
mix to form the image of modern £.6dz (Table
2). Among the socio-economic changes that have
played a significant role in the determination of
the present-day (after 1989) appearance of the
city, the most important include the consequenc-
es of the collapse of many textile industry plants,

impoverishment of the population and the deg-
radation of a large part of the city’s housing, in-
dustrial and communication infrastructure. The
revitalisation process is underway, and new
housing estates and industrial buildings appear.
The former 19th-century industrial complexes
receive new residential, office and commercial
functions. Nevertheless, even in areas close to the
city centre, many degraded areas are still subject
to spontaneous vegetation succession, i.e. land
abandonment.

Methods

The investigation was begun by collect-
ing the sheets of orthophotomap in four bands
(red, green, blue and near-infrared) covering the
whole area of £6dz. Then the datasets from or-
thoimagery were prepared for the training and
validation process. The next step was to compose
a dataset of panchromatic (grayscale) orthoim-
agery, which was an input for the Pix2Pix ma-
chine learning model. This model has been tested
by comparing the artificial and real NDVI val-
ues. The last step was to perform the perceptual
evaluation on the test orthophotomap. A graphic
overview is shown in Figure 2.

1. Acquire RGB and
CIR orthoimagery

Prepare training and
validation datasets
derived from
RGB and CIR
orthoimagery

1. Prepare a test
dataset composed
of panchromatic
orthoimagery

\]

Train the customized
Pix2Pix machine
learning model

—>

1. Test the machine
learning model
by comparing
artificial and real
NDVI values

Perform perceptual
evaluation

Fig. 2. The main steps of the investigation.

Dataset

Alldatahavebeendownloaded fromGeoportal

(2021). The dataset included the orthophotomaps
in two different compositions: RGB (bands: red,
green and blue) and CIR (near-infrared, red and

Table 2. Structure of land use in £.6dz [km?].

Total Agricultural | Forest, woody, | Residential | Industrial Transport Groundwater Other
land and bushy land areas areas areas
293.25 113.76 24.67 4713 13.91 4237 1.33 1.15

Source: Statistics Poland (2020).
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green). The Vexel Imaging UltraCam Eagle M3
(serial: 431561782X117253-f100) camera model
was used. The raids were made on 11 April 2021.
The data download process has been carried
out by using a plug-in for the Q-GIS software,
GUGIK’s data downloader (EnviroSolutions
2021). With this tool, it was possible to download
all sheets, at least part of which was within the
administrative boundaries of the city of L6dz.
As a result, 261 sheets in TIFF format have been
downloaded with both RGB and CIR composi-
tions. The data have a ground sampling distance
(GSD) (pixel size) of 5 cm and in total, they occu-
py 140 GB of disk space.

To compute a four-band orthophotomap
(RGB + NIR), ESRI (Environmental Systems
Research Institute) ArcGIS Desktop 10.5.1
Composite Bands were used. The data process-
ing pipeline was implemented in Python. Its
main task was to merge RGB image bands and
the first band from CIR.

Collected orthophoto imagery was post-pro-
cessed to form neural network training and val-
idation datasets. Firstly, each RGB + NIR sheet
acquired from the initial dataset was split into
multiple non-overlapping rectangular patches
with different edge sizes. This procedure result-
ed in 642,582 patches in total: 493,290 with 512
px, 120,582 with 1024 px and 28,710 with 2048 px
edge lengths. Secondly, each patch was divided
into two separate items.

The patch designed to be utilised as input dur-
ing neural network training contained grayscale
images derived as a simple sum of RGB bands
stretched linearly into 256 grey levels, and can be
defined by the following formula:

PAN (R + G + B) — min) )

max — min

where R, G and B are respective spectral bands of
orthophoto; and max and min are the maximum
and minimum pixel sum value of R + G + B.

Network targets included the NDVI value
calculated using the RED and NIR bands. All
dataset items were scaled between 0 and 1 and
resized to fit the network requirements form-
ing a [256, 256, 1] input and [256, 256, 1] target
tensors. After the post-processing step had been
completed, five patches representing different
spatial features were randomly picked from each
processed orthophoto sheet to form a 1305-item
validation subset. Importantly, these items did
not overlap with the training dataset in terms of
areas represented in the patch across all handled
patch resolutions. For convenience and to speed
up read times, the computed datasets needed to
be rendered into a form that would demonstrate
persistence across time, and for this purpose,
NumPy archives in the NPZ (numpy zip) format
(‘NumPy documentation’) were used. Dataset
preparation was performed using Python pro-
gramming language and machine learning and
CV libraries such as scikit-learn (scikit-learn: ma-
chine learning in Python - scikit-learn 1.0.2 docu-
mentation b.d.), scikit-image (van der Walt et al.
2014), OpenCV (OpenCV b.d.) and TensorFlow
Datasets (TensorFlow Datasets b.d.) (Fig. 3).

During network training, each of the in-
put-target pairs was extensively augmented by
applying horizontal and vertical flipping, pix-
el intensity manipulation and performing ran-
dom perspective transform. Augmentation was
performed using imgaug - a library for image
augmentation in machine learning experiments
(Jung 2022).

The test dataset was prepared using RGB
orthoimagery acquired in 2012. Test orthopho-
to patches did not overlap with training and

Fig. 3. Visualization Visualisation of a dataset item, based on Geoportal (2021). From left to right: RGB
composition, R, G and B bands that form the input tensor and normalised difference vegetation index, which
serves as a target tensor.
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validation sets. Test items were similarly pro-
cessed as those in the training set, excluding
augmentation.

Evaluation metrics

Due to the high variety of content presented
in RS imagery and the undoubted complexity of
the natural image synthetisation process, GAN’s
artificial image quality assessment is considered
an extremely complicated task. Relying only on
the quality of colour reproduction would be in-
adequate, and thus there is also a need to pay
attention to the structure and feature preserva-
tion, as well as evaluate the level of realism and
diversity of acquired results. Additionally, when
working with patches computed from a larger
image, a confirmation is needed as to whether
a reassembly yields a uniformly correct output.
There are many reliable metrics available. In
themselves, none of these metrics, considered
alone, provides enough information to conduct
a comprehensive assessment. Therefore, a com-
bination of them is needed. The generative ad-
versarial NDVI synthetisation process has been
monitored using the following metrics: structur-
al similarity index measure (SSIM), root mean
square error (RMSE), peak signal-to-noise ratio
(PSNR) and human eYe perceptual evaluation
(HYPE). Implementation of SSIM, RMSE and
PSNR algorithms is available in the Python li-
brary image-similarity-measures (Miiller et al.
2020). Metrics were calculated by directly com-
paring values produced by the generator net-
work with a sigmoid activation function out-
put (NDVI_artificial) with ground-truth images
(NDVL_real).

RMSE

RMSE is a standard statistical metric in such
areas as meteorology, air quality and climate re-
search, but its most popular application is in the
field of geoscience because it gives more weight
to errors with larger absolute values than er-
rors with smaller absolute values (Chai, Draxler
2014).

The RMSE is an index used for determining
the error of a model in forecasting quantitative
data. In practice, it is the root of the mean square
of the distance between estimated and obtained

values in the range 0-1. The indicator formula is
as follows:

RMSE(y, §) = \MSE(y, i) 3)

where represents predicted values, observed
values and n the number of observations.

Structural similarity index measure

Natural image signals are highly structured.
Their pixels exhibit strong dependencies, espe-
cially when they are spatially proximate, and
these dependencies carry important information
about the structure of the objects in the visual
scene (Wang et al. 2004). Structural similarity in-
dex measure (SSIM) provides a way to directly
compare two images in terms of contrast, struc-
ture and luminance. It is frequently used to as-
sess image compression and reconstruction qual-
ity. SSIM value ranges between 0 and 1, where
0 indicates dissimilarity and 1 similarity. Its use
in orthoimagery analysis is justified because by
imitating human perception, it can recognise pat-
terns and thus measure the quality of spatial fea-
tures’ reproduction.

(2l’ly;’ljf/ + Cl)(zayg + Cz)

SSIMU 9) = 2+ 12+ Cyoz + 02+ )

)

where 1 represents mean value from pixel, o pix-
el values standard deviation and C, constant.

PSNR

PSNR is calculated based on mean square er-
ror (MSE). Its value approaches infinity as the
MSE approaches zero. Therefore, higher image
quality yields higher PSNR values. On the other
hand, low values indicated high numerical dif-
ferences between images. It is worth mentioning
that PSNR performs poorly in discriminating
structural content in images since various types
of degradations applied to the same image can
yield the same value of the MSE (Horé, Ziou
2010). At the same time, PSNR can assess the re-
sults of image transformations that tend to apply
different noise levels to their output.

255° ) )

PSNR(y, i) = 10 log,, (MT(]/}A/)
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Perceptual evaluation

The HYPE method measures the human de-
ception rate. The HYPE  score rates a total error
on a task supported by 50 fake and 50 real imag-
es. It enables capturing errors on both artificial
and real images and effects of the hyper-realistic
generation when fake images look even more re-
alistic than real images (Zhou et al. 2019). HYPE |
is calculated as a proportion of images judged
incorrectly and aggregated the judgements over
the n evaluators on k images to produce the final
score. HYPE  values range from 0 to 1, where 0
indicates low synthetisation capabilities, 0.5 is a
sign of the good properties of creating artificial
samples and 1 means that results are hyper-real-
istic and easy to distinguish from the real output.
Two experts in the field of RS were recruited to
participate in the study to perceptually evaluate
synthetic NDVI layers. Due to the complexity of
the task, experts were granted unlimited evalua-
tion time. Experts working independently visual-
ly inspected 155 and 101 randomly selected im-
age sets, variously consisting of a panchromatic
image, NDVI_ , NDVI__. and NDVI ae In the
first stage, their task was to find out where the
NDVI .. images differed significantly from the
NDVI, . image, i.e. they contained overstated
or underestimated NDVI values. In the second
stage, attention was drawn to areas where the
NDVI values were similar.

NDVIdiff = NDVItrue - NDVIartiﬁcial (6)

For the purpose of the study and after per-
forming extensive experiments with different
parameters, loss functions and hyperparameters
tuning, the baseline TensorFlow architecture
(TensorFlow 2022) has been utilised with the fol-
lowing modifications:

Depth-wise separable convolution layers
(Chollet 2017) were applied instead of default
convolution layers to reduce the resource re-
quirements of the model.

The number of filters in each convolution lay-
er was multiplied by a factor of 2 to increase net-
work capacity. Originally, the first convolutional
downsampling block started with 64 filters. In the
utilised approach, 128 initial filters were used.

Modifying the generator loss function by en-
hancing the existing implementation comprised

NDVI_true NDVI_artificial

f

Concatenate

1

SeparableConv2D (- BatchNormalization |-

1

SeparableConv2D || BatchNormalization |-

'

SeparableConv2D || BatchNormalization |-

1

ZeroPadding2D

¥

Conv2D

Y

BatchNormalization

Y

LeakyRelLU

'

ZeroPadding2D

1

Conv2D

{

Discriminator output

LeakyReLU

LeakyRelLU

LeakyRelLU

Fig. 4. Modified Pix2Pix discriminator model
visualisation.

applying a sum of binary cross-entropy (BCE)
and mean absolute error (MAE) with an addi-
tional structure similarity index measure (SSIM).

Figures 4 and 5 present the fully modified
Pix2Pix architecture. The overall network objec-
tive G* is an extension of the objective present in
the original Pix2Pix paper (Isola et al. 2018). It is
as follows:

L G,D)=E_[logD(x,y)] +

cGAN( Xy 7)

E, [log(1 - D(x, G(x)))]

L,G)=E,[lly - GW)|] (®)

Lop(G)=E_J1-SSIM(y, GR)]  (9)

SSIM
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G*=arg mgn max LG, D)+

AL (G) + 0L (G) (10)

where D represents the distriminator, G the gen-
erator, x the input PAN image, y the NDVI_ and
G(x) the calculated NDVI___ . .

The model training workflow is as follows.
The input grayscale image (256 px x 256 px x 1
band) is fed to the generator. The generator pro-
duces a synthesised NDVI composition image
(256 px x 256 px x 1 band). Both real and artificial
NDVI composition images are transferred to the
discriminator, which tries to assess in each case

Panchromatic Image

\i

whether it is dealing with real or artificial images.
After the assessment, the discriminator loss is cal-
culated to measure the quality of the verdict. In
the next phase, the generator loss is calculated to
consider both the quality of the synthesised out-
put (MAE + SSIM) and the discriminator verdict
(BCE). The training step ends when both genera-
tor and discriminator gradients are applied.

Results

In the interpretation process, the main forms
of land cover were identified with which the

SeparableConv2D || BatchNormalization || LeakyRelLU
T
1
1
1
1
1
SeparableConv2D || BatchNormalization |- LeakyRelLU —
SeparableConv2D || BatchNormalization |- LeakyRelLU
v '
Conv2DTranspose (| BatchNormalization |- RelU > Concatenate
T
1
1
_______________________ )
I
1
|
Conv2DTranspose || BatchNormalization |- RelU » Concatenate -

)

f

Conv2DTranspose

Y

Sigmoid

!

NDVI_artificial

Fig 5. Modified Pix2Pix generator sub-model visualisation.
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visible regularities of the algorithms” behaviour
can be associated, i.e. using which it can be ascer-
tained whether the estimated NDVI_ .. value
was higher, close or lower than the NDVI_ value
calculated from the infrared and red bands. Each
presented figure shows, in order, panchromatic
images (PAN), ground truth (NDVI_ ), model
inference result (NDVI__. ) and differences be-
tween NDVI images (NDVI ). Figure 6 presents
the utilised colour map to produce the NDVI_ ,
NDVI ... and NDVI, images.

In the first analysed area, a single row of low
trees is visible (Fig. 7). On the NDVI__. = im-
age, the line of trees has lost its rectilinear shape.
NDVI, . and NDVI .. are comparable over a
large area of meadows, where the texture is not
very differentiated. The evaluation of the sample
yielded 0.8764 SSIM and 0.0329 RMSE, which
should be considered good results.

The area presented in Figure 8 is entirely
wooded. NDVI_ has exposed only a few trees
and one group, whereas the remainder of the

trees and terrain are blue-toned. Some crowns
or their fragments (in the tree group) are missing
on NDVI__.. . Two other trees have been found.
The rest of the picture (background under the
trees) is shown in the same way in both pictures
(NDVIL ... equals NDVI_ ). The evaluation of
the sample yielded 0.7667 SSIM and 0.0519 RMSE,
which should be considered mediocre results.

Figure 9 presents a parking lot with passenger
cars. Most of the cars are properly handed over,
and one is underestimated (its shadow - falls on
the surface of the yard - overestimated), whereas
the other car (white bodywork area on NDVItrue)
is underestimated. The green stripe (a bit devi-
ated) is better exposed on the NDVI_ . image.
The garage roof was slightly overestimated. The
shadow of the lantern is reproduced similarly in
both NDVI images. The evaluation of the sample
yielded 0.8553 SSIM and 0.0469 RMSE.

Big buildings with vast shadows are shown in
Figure 10. In the shadows, a warehouse of pallets
and building materials can be observed; however,

0

0.1 0.2 0.3 0.4

0.5

0.6 0.7 0.8 0.9 1

Fig. 6. Colour palette used during visual inspection of Figs 7-15.
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Fig. 7. Inference result - abandoned land; based on Geoportal (2021). From left to right: PAN, NDVI
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in places of greater chaos, such textures on the
NDVI .. image have been incorrectly marked
as greenery. An increase of the NDVI__. . (cor-
rectly) was identified on lawns in the lit zone.
Roofs and roads manifested with no major dif-
ferences between NDVI .. and NDVI_ . The
evaluation of the sample yielded 0.7859 SSIM
and 0.0689 RMSE.

Figure 11 represents an area of low and inten-
sive development - an example of areas where
there are large differences between NDVI_ and
NDVI .. . Many roof areas (~90%) stand out as
NDVI compliant. Other roofs may have inflated

NDVI . in places where slightly blurred edges

artificial

are observed (e.g. in the left corner of the image).

Fig. 9. Inference result - small parking lot: PAN, NDVI_ ,

Underruns occur in the shadows cast by roofs.
In the centre of the bottom edge of the painting,
the floral pattern, as if arranged in a scout cross,
has a low NDVI__. ., which can be interpreted
in such a way that geometrised plant shapes are
recognised as inanimate objects, while roofs with
blurred edges as lawns. The evaluation of the
sample yielded 0.5651 SSIM and 0.0736 RMSE.
The next figure (Fig. 12) shows a large-scale
commercial facility (40%), parking lot (25%) and
grass. The biggest mistake obtained as output
from the NDVIartificial revaluation is that a long
row of skylights on the roof of the building has
been incorrectly recognised, possibly as a line
of trees. On the same roof, next to it, there are

‘s |

NDVI .

artificial

and NDVI__; based on Geoportal (2021).
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Fig. 10. Inference result - buildings: PAN, NDVI

Fig. 11. Inference result - residential area: PAN, NDVI]
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irregularly placed ventilators, and yet the entire
area received the correct NDVI. Correct NDVI
was identified on large sections of roads and
large sections of roofs. NDVI__. . of the grassy
area on the right side of the image is visibly un-
derestimated. The evaluation of the sample yield-
ed 0.6698 SSIM and 0.0740 RMSE.

The whole figure (Fig. 13) presents an emp-
ty parking lot of a shopping centre with large
areas for vehicles and small, long and narrow
islands of greenery. Most or some of these islets
have undervalued NDVI One of the con-

artificial®

tours of the green area was blurred because, at
some point, it was tonally similar to the paving
covering the adjacent part of the parking lot. The

Fig. 12. Inference result - commercial facility: PAN, NDVL_ , NDVIL . and NDVI

evaluation of the test sample yielded 0.8318 SSIM
and 0.0496 RMSE.

Figure 14 shows a very large farmland area
with an overestimated NDVI___. ., where the tex-
tural features were very similar to those of the
fields covered with vegetation. Other discrepan-
cies in the fields arise along the lines resulting
from the technology of establishing and cultivat-
ing the crop. The evaluation of the test sample
yielded 0.7450 SSIM and 0.1317 RMSE.

It was found that the algorithm heavily de-
pends on textural information to function prop-
erly. It was clearly visible, for example, that
lawns, if they had an amorphous structure (lack
of texture) and were surrounded by straight,

pn——"

4 based on Geoportal

(2021).

Fig. 13. Inference result - commercial facility parking lot: PAN, NDVI_ , NDVI

i ANd NDVI > based on

Geoportal (2021).

Fig. 14. Inference result -farmland: PAN, NDVI

NDVI
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iificia @and NDVI - based on Geoportal (2021).
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clear edges, generally had values lower than in
the NDVI_  image, i.e. they were recognised as
surfaces of roofs or paved parking lots or roads.
In addition, lawns that were sunlit, and accord-
ingly registered brighter in the panchromatic
image, erroneously obtained higher results than
lawns that were in the shade and consequently
darker. For arable fields, the algorithm overesti-
mated the values for darker parts of crops.

For water-occupied areas, the artificially gen-
erated NDVI values were generally lower than
NDVI_ .. On the other hand, the opposite was true
in the case of the immediate vicinity of a body of
water or watercourse, which, due to higher hu-
midity, had a darker shade in the panchromatic
image (similar to the darker parts of crops).

The results closest to the actual NDVI_  val-
ues were obtained for sheets with homogeneous
coverage. If the terrain coverage is similar over
a large part of the image, then NDVI__. . does
not differ in practice from the NDVI_  calculated
from the red and infrared channels. Such objects
are large areas of roofs, roads and crops. On the
other hand, the areas with the most differences
between NDVI ... ~and NDVI__ were hous-
ing estates built with single-family houses, with
their backup facilities such as a small driveway
or a yard with garages, and gardens with diverse
vegetation, consisting of irregular fragments of
lawns, single shrubs and trees, or their groups.
The whole picture is complemented by numer-
ous fences (usually tight, sometimes in the form
of walls), often planted with dense lines of not
very tall trees or shrubs (it is difficult to distin-
guish individual specimens in the pictures), as
well as various types of surfaces of housing estate
roads or yards. It was noticed that the greatest
differences between NDVI_ and NDVI_ .. in
this area arose in situations where the structure
and texture of the image in a fragment were more
complex or less ordered. In such cases, they were
recognised as areas covered with vegetation.

An interesting observation is that NDVI__.
does not indicate overestimated values for ima-

Table 3. Test set evaluation metrics.

SSIM PSNR RSME
AVG 0.7569 26.6459 0.0504
STD 0.1083 3.6577 0.0193
MIN 0.3589 16.3343 0.0026
MAX 0.9987 51.7674 0.1525

ges of people, visible, e.g., in the background of
pavement, even though this indicator, calculated
from RED and IR channels, incorrectly inflates
the value in the place occupied by people in a
given area.

In the case of tree canopy, which generally has
high NDVI_  values, the algorithm found their
limits fairly well. Owing to variances in the lev-
el of insolation, corresponding variations could
also be present in the index values assigned to
tree-branches, which is evidenced by the obser-
vation that branch fragments on the sunny side
generally received lower values.

NDVlIartificial images do not accurately re-
produce the textural information present in the
original RGB, panchromatic and NDVItrue ren-
derings. For instance, drawings of roof tiles, park-
ing lot pavement tiles and the structure of tree
branches do not capture the detailed patterns of
surface-markings naturally seen in these objects.
Additionally, deformation was observed in the
rendering of linear green systems, as evidenced
by the fact that tree rows, perfectly straight in the
field, have been depicted as skewed in the synthe-
sised image. An important result of the interpre-
tation process is the statement that the artificially
generated image is less accurate, especially in the
case of buildings, because the edges of these ob-
jects are blurred or less sharp. As a result, one can
get the impression that the image obtained has a
lower spatial resolution.

Table 3 presents evaluation metrics calculated
for all orthophoto patches stored in the test da-
taset. It shows the average, standard deviation,
minimum and maximum values of the metrics
for monitoring the generative adversarial NDVI
synthetisation process.

Discussion

The performed experiment showed that the
structure and texture of the panchromatic aerial
RS image contain information that allows us to
estimate the NDVI value for various objects of
urban space. However, we do not know the real
values of the brightness of bands based on which
NDVI is calculated, i.e. RED and NIR. Figure 15
presents NDVI calculated solely from a panchro-
matic version of the aerial image utilising the
sliding window inference approach.
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At 0.05 m GSD, the obtained images allow a
good insight into the city space: the details of the
construction of roofs, the presence of chimneys,
ventilators, characteristic tile arrangements,
roads and parking lots, fences, passenger cars
and trucks are visible as well. There are also vis-
ible details of the structure of vegetation - indi-
vidual trees, their groups or rows - treetops and,
in the case of leafless trees, the arrangement of
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branches and sharp shadows cast by them on the
ground. The effects of ploughing are visible in
the cultivated fields not covered with vegetation.
The fields covered with vegetation also often
show streaky texture and traces of agricultural
machinery passing resulting from the specificity
of the cultivation itself and plant care treatments.
Due to the small size of pixels, it can be assumed
that there is no problem with the spectral mixture,

\ \ B
. ) AA’V' Ol «

v o WP N AP
’i\,‘\;u”"»é‘! /? €7
P - Y= R 20 =
L &3 Pt

i Z 4 S = T 1

>4®

=

x 2N ,',l/"‘
v /- /r?)j\' e\ L -

Fig. 15. Sliding window inference (NDVI__. . ) of an orthophoto used to compute the test dataset); based on
Geoportal (2021). The scene (51.76174 E, 19.42149 N) presents £.6dz, Poland. Red values indicate high NDVI
values (closer to 1). Blue ones represent small values (closer to —1).
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which should be considered in the case of images
with low resolution (Small 2001), and each of the
pixels represents reflectance values typical of ur-
ban land cover forms, or actually, materials pres-
ent in this space.

In the light of the assessment of the obtained
NDVI .. images, let us consider the factors
that facilitated or, on the contrary, made it diffi-
cult to achieve the intended goal. First, note that
the aerial photos based on which the grayscale
orthomosaic used in the experiment were made
are from the early spring period, and thus the
trees and some shrubs were not covered with
leaves, or the leaves were not yet fully devel-
oped. Therefore, in the real picture (NDVIL_ ),
there should not be especially high NDVI values
in places of shrubs and trees because trunks and
branches are similar to objects of inanimate na-
ture. However, even under such conditions, the
algorithm could appropriately assign values to
the NDVI__. = image, similar to those it learned
to recognise on the NDVI,_ ground truth.

At this point, the question arises as to wheth-
er the result would not be even better if we used
pairs of pictures for learning: panchromatic (from
spring, as these are mainly performed for cities
in our geographical zone) and NDVI,_  gener-
ated from the summer image when the vegeta-
tion is fully developed. Could we perhaps get
NDVI ... values that describe vegetation bet-
ter? From this perspective, spring images (orig-
inally taken as panchromatic or linearly synthe-
sised from RGB channels) could be used to create
images showing the predicted NDVI distribution
in the full growing season. The evident practical
significance of such an image (which we refer to
as the approximated summer NDVI) may be at-
tributable to the fact that the present authors en-
countered circumstances that permitted them to
quickly identify places where changes in the spa-
tial structure of vegetation were made during the
leafless period (change detection). It would be
enough to take panchromatic or even RGB + NIR
photos in spring and apply a trained algorithm
(here, photos from summer on one occasion
would be required), and creation of NDVI
would be feasible every spring.

One more aspect needs to be considered,
namely the classification of objects, mainly veg-
etation, which is typical for RS. Summer photos
are considered to be the best for this purpose as

artificial

the vegetation is in full growth, and it is possible
to capture the spectral differences between par-
ticular species or their genera. The accuracy of
the classification can be increased by entering in-
formation about the structure and texture of the
image. It should be noted, however, that we can
only have information about the structure and
texture of the top layer of tree crowns. The use of
additional data from spring images allows deep
penetration of visibility into the tree crowns, thus
showing the details of their internal structure,
which should increase the identification poten-
tial. In addition, it is worth remembering that
panchromatic images, those recorded by photo-
grammetric cameras as panchromatic, and not
synthesised from RGB + NIR channels, have a
good spatial resolution, better than each of these
channels considered separately.

When photographing from an aerial view,
however, we must consider the problem of a spe-
cific representation of reality in the perspective
projection. Each object with a third dimension
(building, tree) has shifted images of the upper
parts (roofs, trees - crowns) in relation to the
lower parts (building bases, tree trunks), gener-
ally from the centre of the photo to the outside.
In photos taken from different points in space,
this deviation for the same objects will be visi-
ble in different directions. The shift effect gets
greater as the subject is further from the centre
of the image, and it decreases as the shooting
height increases. This makes it difficult to take
pictures, e.g. in spring and summer and at any
other time that would result in the pictures being
characterised by similar geometric properties (i.e.
deviations of spatial objects in the same direc-
tions) due to the need to overlap them, because it
would be difficult to take the shots from exactly
the same points in space. Part of the solution to
the problem is to significantly increase the height
of aerial photography or even the use of high-res-
olution satellite images. In the context of creat-
ingan NDVI___. . image, this observation should
be read in such a way that if we had greyscale
images of a given area, taken on the same date
but from different points in space, we could ex-
pect differences in the estimation of NDVI__.
in many places. These differences would result
from the fact that the images of the crowns of the
same trees would be visible in the background of
other objects and in a different context.
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At this point, there is probably a high poten-
tial for NDVI estimation based on panchromatic
images forming stereoscopic pairs and thus con-
taining 3D information. Having full control over
all geometrical relations between two stereoscopic
images and the terrain, i.e. having the so-called
parameters of internal and external orientation,
we enter the area of known issues, typical in pho-
togrammetry and RS. Then, finding correspond-
ing fragments of two images would not be diffi-
cult. Appropriate algorithms have long been used
to correlate images. Digital image matching (DIM)
techniques are now widely used to automatically
generate digital surface models and digital ter-
rain models from satellite or aerial images of dif-
ferent resolutions (Koza 2006, Davis, Wang 2011)
and further to detect changes, e.g. as a result of
the development of plant cover or movements
(Dematteis, Giordan 2021). The NDVI__ . estima-
tion method proposed by us can be interwoven
into ML-based digital image correlation (DIC)
procedures to find the same objects, e.g. in oblique
photos, multi-view oblique images (Verykokou,
Ioannidis 2019), or pairs of images even with sig-
nificant differences in viewpoints (Yao et al. 2021).
We expect that having information about the third
dimension of objects can be used to develop ex-
pansions of known ‘two-dimensional’ textural
features into their ‘three-dimensional’ versions
(Haralick et al. 1973), which will facilitate the
recognition of objects, determining their shapes
and estimating their NDVI_ .. on a level similar
to NDVI,_ . The prospects for improving the ob-
tained results, including some guidelines for fur-
ther research, may be the inclusion in the study
of orthoimages with the radial displacement effect
entirely removed, i.e. true orthophoto. For their
production, normalised digital surface models
(nDSM) are used, compiled based on LiDAR la-
ser scanning data. Currently, it is difficult to find a
more effective and accurate source for information
about the topographic and spatial positions of ob-
jects whose location is discerned through the use
of LiDAR laser scanning technology. The nDSM
geometry is correct - the projection is orthogonal,
and there are no displacements. However, there
is some loss of photographic image quality due to
pixel resampling. Even so, it is certain that LIDAR
data (point clouds) have features that make it pos-
sible to distinguish vegetation from other objects,
such as buildings.

It was noticed that the algorithm used in the
research could repair the image and correct the
NDVI value. This effect is visible in places of
shadows cast by tall buildings and is manifested
by an increase in the index value. This is partly
in line with the results obtained by Myeong et al.
(2003), who used high-resolution digital infrared
images and divided the urban space into trees
and shrubs, lawns, soil without cover, water and
impervious surfaces. As they stated, the shaded
areas were a challenge (similar problems are also
reported by Pyra and Adamczyk [2018]), but con-
siderable spectral similarities were also observed
between the distinguished land cover classes.
Multiple attempts to select and apply textures,
masks and majority filters allowed the accuracy
of the classification to be increased. We believe
that it is possible to conclude that our algorithm
has output good results only if the condition
is satisfied that, when digitally expressed, the
structure and texture of the represented objects
should be visible even when they are enveloped
in shadows, and even when they are often invisi-
ble to the human eye; these circumstances usual-
ly pertain to dense, layered vegetation.

The obtained results were also influenced by a
specific property of the textural features, namely
the sensitivity to changes in some image param-
eters. As reported by Ksigzek (2018), changes in
contrast, brightness, sharpness and image rota-
tion may impact several groups of textural fea-
tures of roofs selected by her for research (asbes-
tos roofs were dealt with). The obtained results
were also analysed in terms of parameters insen-
sitive to image transformations, but no texture
features were found that would be resistant to all
factors causing their change. In our experience,
this observation is of such importance that when
estimating NDVI, one should probably consider
the generation of an extended set of textural fea-
tures from images in a manner similar to the one
mentioned above, modified.

Estimating the NDVI based on archival pan-
chromatic images makes it possible to study the
conditions characterising, and changes in, urban
vegetation cover in the long term. The research
may primarily concern changes in the amount
of greenery resulting from the expansion of veg-
etation cover due to the economic activity of
municipal authorities and natural growth. Still,
it also helps reveal places of excessive or illegal
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tree removal. Figure 16 presents an example of
utilising the model architecture to predict NDVI
values of an aerial image acquired in 1966.

Itis hard to expect that the generated NDVI__.
images will fulfil all the functions that NDVI ap-
plies to in modern scientific research and practice.
We expect that the differences between the syn-
thesised and real NDVI are significant enough to
allow only a simple classification: vegetation - not

Fig. 16. Sliding window inference (NDVI

artiﬁcial)

vegetation, as well as estimating the size of bio-
mass, or, e.g. determining the size of the shade
effect, in the sense in which researchers discuss
this issue (Li, Ratti 2018, McPherson et al. 2018).
However, it may be problematic to try to classify
vegetation even into large groups (e.g. coniferous
- deciduous), and subtle tasks —such as assessing
the health condition and water stress of vegeta-
tion, crop maturity, nutrient content (e.g. nitrogen,

of an archival 1966 greyscale aerial image; based on GUGiK
(Head Office of Geodesy and Cartography b.d.). The scene presents £.6dz, Poland. Red overlay indicates values
where 0.5 <NDVI< 1.
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chlorophyll content) and estimated yields, as well
as detection of disease or insect infestation—
would almost certainly pose a major challenge.

The lack of high precision does not reduce the
applicability of this method when combined with
other machine learning methods. The achieved
results enable utilising the results as a data aug-
mentation technique and as an inpainting mecha-
nism. The first approach could involve preparing
adataset of NDVI__. . images enriching an exist-
ing dataset, and supporting the training process
with new realistic but artificial samples. Data
augmentation is an indispensable but difficult
step in scientific research using neural networks.
A similar situation occurs in the case of inpaint-
ing, which can be utilised to fill in missing data
in RS imagery. Not only can the method generate
missing NDVI values from panchromatic image-
ry, but it also enables calculating the NIR band
when dealing with RGB images.

Conclusions

This research discussed and confirmed the
potential of utilising cGAN in the performance
of an image-to-image translation capable of es-
timating NDVI from a single panchromatic or-
thoimagery. The customised Pix2Pix model
was trained on patches acquired from an ortho-
photo presenting an urban area. The network
achieved 0.7569 * 0.1083 SSIM, 26.6459 + 3.6577
PSNR and 0.0504 + 0.0193 RSME on the test set.
Furthermore, the model passed a thorough in-
spection during perceptual evaluation, during
which the main areas of error were identified.
The overall results are satisfactory. The estimat-
ed NDVI values can be utilised to distinguish
areas of different vegetation volumes. Although
the predicted NDVI values in pixel scope are not
precise enough to utilise the model as a replace-
ment for traditionally computed NDV], it can be
used in a variety of avenues of application, from
archival RGB and panchromatic imagery pro-
cessing to serving as a data augmentation or an
inpainting technique.
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