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abstract: The paper presents an application of interpretative machine learning to identify groups of lakes not with 
similar features but with similar potential factors influencing the content of total phosphorus – Ptot. The method was 
developed on a sample of 60 lakes from North-Eastern Poland and used 25 external explanatory variables. Selected 
variables are stable over a long time, first group includes morphometric parameters of lakes and the second group en-
compass watershed geometry geology and land use. Our method involves building a regression model, creating an ex-
plainer, finding a set of mapping functions describing how each variable influences the outcome, and finally clustering 
objects by ’the influence’. The influence is a non-linear and non-parametric transformation of the explanatory variables 
into a form describing a given variable impact on the modeled feature. Such a transformation makes group data on the 
functional relations between the explanatory variables and the explained variable possible. The study reveals that there 
are five clusters where the concentration of Ptot is shaped similarly. We compared our method with other numerical 
analyses and showed that it provides new information on the catchment area and lake trophy relationship.
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Introduction

A trophic state relates to the productivity of 
the lake (i.e., the availability of nutrients) and acts 
as one of the key characteristics of aquatic ecosys-
tems. Natural factors largely control the trophic 
state of aquatic systems; however, they are also 
prone to anthropogenic disturbances. The latter 
are responsible for considerable changes in lakes 
during the Anthropocene. Therefore, much atten-
tion is devoted to tracing the long-term trophic 

evolution of lakes and understanding the controls 
on the trophic state of lakes in the present-day 
human-affected environment. Even though the 
trophic state is a long-term condition (Rodhe 
1969, Schindler 1977), measurable indicators that 
define this state may vary periodically. Factors 
determining trophy indicators are roughly divid-
ed into a stable for a long time and changeable 
over a shorter period. The former include physi-
ographic properties of the lake and its catchment, 
and the latter connects with seasonal processes 
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causing changes in the physical and biogeochem-
ical properties of water. Ohle index, Schindler 
index, mean water depth, river network density, 
slope steepness, the share of endorheic areas, ge-
ological structure and land use in the catchment 
area are features regarded as controlling the tro-
phy state (Bajkiewicz-Grabowska 2020). In-situ 
measurements of trophy indicators provide the 
best sources to build accurate models; however, 
such data are sparse, often incomplete, or access 
to it is restricted (Hollister et al. 2016). The infor-
mation on the status of the trophy itself does not 
allow for a complex analysis of the responsible 
factors and thus, the reliable prediction of poten-
tial changes. With the rapid diffusion of geosci-
ence and information technologies in the last dec-
ades (Chen et al. 2021), there is growing attention 
on numerical modelling in the many aspects of 
environmental changes. Thus, a possible solution 
for such a problem is predictive modelling that in-
volves data obtained from public repositories like 
land cover/land use, lake basin geometry, and 
geology or directly calculated using GIS software.

Many papers describe the methods used to 
predict water trophies using watershed varia-
bles (Akbar et al. 2011, Benedini, Tsakiris 2013, 
Borics et al. 2013, Sun, Scanlon 2019, Gorgoglione 
et al. 2020). The efficiency of several multivariate 
analyses, including clustering, discriminant anal-
ysis, and principal component analysis, has been 
proven to reduce data complexity and detect in-
trinsic patterns in the underlying data. (Simeonov 
et al. 2010, Su et al. 2011, Li et al. 2017, 2018, Cui 
et al. 2019, Eliasz-Kowalska, Wojtal 2020). Such 
an approach has one considerable weakness: the 
detected patterns always show the internal dif-
ferences of the explanatory variables, which does 
not always refer to the trophic state of the lakes. 
The linear multiple regression models (Jones et al. 
2001, 2004, Beaulieu et al. 2014, Leach et al. 2018) 
provide insight into the relationship between 
explanatory variables and values of trophy indi-
cators, but those methods are irrespective of the 
fact that most of the relationships are non-linear 
(Dormann et al. 2013, Huang et al. 2015).

New data acquisition techniques in geochem-
ical surveys provide hundreds or thousands of 
observations described by tens or hundreds of 
features. When clarity of interpretation is more 
important than the model’s accuracy, simple 
models such as linear models or regression trees 

(Froeschke, Froeschke 2011) usually provide suf-
ficient insight into relationships between factors 
and the outcome at the expense of the prediction 
quality. Complex models cannot be directly ex-
plained because they are not easy to understand. 
Some of the learners, including random forest 
(RF) (Breiman 2001), provide a measure allowing 
to estimate the relative importance of variables 
used, thus identifying such a subset that influ-
ences the variation of trophy factors.

The abundance of the data provides new 
opportunities, but however, it is challenging to 
investigate and interpret the role of many envi-
ronmental features (Dafforn et al. 2015). It is even 
more difficult to understand relationships be-
tween elements of the system and their influence 
on the outcome because of complex relationships 
inside the multidimensional data. Regression 
models are a natural approach in searching re-
lations between explanatory and dependent var-
iables. Simple methods do not provide interpret-
able results when variables are related to each 
other or mutually convoluted. Complex models 
like assembles (Hollister et al. 2016, Li et al. 2016) 
or neural networks (Li et al. 2015, Rocha et al. 
2017, Gebler et al. 2021) are then the only solu-
tions; however, such models cannot directly be 
used for interpretation because they are not easy 
to understand. Moreover, many variables are un-
related to the studied phenomenon and are usu-
ally removed based on researchers’ experience or 
previous studies. Such removal, however, leads 
to the replication of the same, limited set of varia-
bles in subsequent studies (Goggin 1986, Harrell 
2015).

There is no simple data analysis that would 
combine the advantages of supervised methods, 
like finding important variables and detecting 
relationships between explanatory variables and 
grouping – i.e. searching for new, possibly un-
known patterns in the data. The first solution is 
optimisation: an iterative search of a combination 
of variables until the most optimal subset is found 
(Jasiewicz et al. 2021). An alternative solution is 
to create a non-linear regression model and then 
analyse it with interpretative machine learn-
ing (EML) (Molnar et al. 2020, Chen et al. 2021). 
Several tools have been recently proposed includ-
ing Partial Dependency plots (Friedman 2001), 
local interpretable model-agnostic explanations 
(LIME) – Ribeiro et al. 2016), Learning Important 
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Features Through propagating activation differ-
ences (DeepLIFT) – (Shrikumar et al. 2017), moDel 
Agnostic Language and eXplanation (DALEX) – 
(Biecek 2018) and SHapley Additive exPlanations 
(SHAP) (Lundberg, Lee 2017). These methods 
replace original values of explanatory variables 
with functional relationships between the explan-
atory and explained variables; in simple words 
the influence of a given variable on the result. The 
latter means a function that operates on an orig-
inal variable value and replaces it with variable 
influence on the outcome. This paper introduces 
a new term: the variable influence, providing a new 
insight into the relationship between the lake’s 
surroundings and the value of trophic indicators. 
Moreover, the influence allows clustering the data, 
not by its original values denoted, but on the func-
tional dependence between the explanatory and 
explained variables, creating a bridge between 
supervised and unsupervised learning.

The research presented in this paper aims to 
develop a solution allowing for clustering so that 
the resulting clusters minimise the dissimilarities 
inside the explanatory features and reduce the 
variation of the dependent variable inside the 
received clusters. The method was developed on 
a sample of 60 lakes from North-Eastern Poland. 
The lakes selected for this study are small and 
moderate in terms of their area and have relative-
ly simple morphology but are sufficiently diverse 
to represent that geographical zone. In addition, 
the lakes were selected to obtain the strongest 
trophic gradient possible, expressed in terms of 
total phosphorus (Ptot). Although the method was 
designed for analysing the complex relationships 
between environmental variables that we believe 
impact the Ptot index, it can be easily applied to 
other complex systems. Thus, the data collection 
will be used as a case study to discuss the possi-
bilities of the proposed method in practice.

Study area

The method was developed based on data 
collected from 60 lakes (Fig. 1) on the border of 
Suwalki and Masurian Lake District (SML). SML is 
an area of glacial and fluvioglacial origin, formed 
during the Pomeranian phase of the Weichselian 
glaciation between 24 k years and 19 k years BP 
(Marks 2012, Pochocka-Szwarc 2013). Dominant 

landforms include undulating morainic plateau 
with some hummocky and fluted till plains and 
washboard moraines (Weckwerth et al. 2019). 
Quaternary deposits are thick and contain typ-
ical components: tills, sands, silts, glaciofluvial 
gravels, and boulders. Lakes are the dominant 
and feature component of the SML landscape 
(Morawski 2005). All lakes are of glacial origin 
and are associated with the moraine plateau, in-
ter-moraines and subglacial gutters. (Kondracki 
2009, Pochocka-Szwarc 2013).

Variables

Lake water sampling and determination of 
Ptot

Epilimnion water samples were collected at 
the lake’s deepest point 1 m below the water sur-
face with UWITEC sampler. Each lake was sam-
pled once, and the samples were taken during 
three field campaigns in summers 2018 (east/cen-
tral sector in Fig. 1), 2019 (central/west sector in 
Fig. 1), and 2020 (east-central-west sector in Fig. 
1). The selection of 1 m depth as a representation 
of surface water followed the methodology of 
Tandyrak et al. (2020). The deepest point is rou-
tinely regarded as representative for the whole 
lake (Tylmann et al. 2012, Hernández-Almeida et 
al. 2017, Apolinarska et al. 2020). Chemical anal-
ysis of Ptot,(µgL−1) was done within a few days af-
ter collecting. Ptot was analysed spectrophotomet-
rically using Nanocolor VIS; (Macherey-Nagel) 
with ammonium molybdate according to PN-EN 
ISO 6878:2006P after mineralisation with HNO3 
and H2O2 in UV Mineral 6.1. The repeatability of 
P determination expressed as a relative standard 
deviation (RSD) from duplicate measurements 
was between 0.3% and 5.5%. Analytical accuracy 
was estimated using certified reference materials 
(CRM 398–399: Major elements in seawater; ION 
96: Hard river water from Grand River) and was 
between 87% and 93%. The content of phospho-
rus in the samples ranges from 0 µgL−1 to 70 µgL−1, 
but the dominant values are below 20 µgL−1.

Explanatory variables

The lake’s trophy is influenced by catchment 
factors responsible for the supply of matter, 
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including nutrients and the morphometric pa-
rameters of the lake, which mainly determine the 
resistance of the lake to the influence of the catch-
ment area. In our work, we considered all the in-
dicators that could be obtained. We collected 25 
explanatory variables, having a potential effect 
on the Ptot concentration in the water. According 
to Bajkiewicz-Grabowska (2020), the first group 
includes the Ohle index, the type of lake water 
balance (flow rate), the density of the river net-
work and average slope, the percentage of non-in-
flow areas in the direct catchment, and lithology 
land use. The second group encompasses average 
depth, the ratio of the lake volume to the shoreline 
length, the percentage of the hypolimnion in the 
lake volume, the Schindler index, the active bot-
tom area, and the water exchange rate in the lake.

The flow rate was omitted due to the lack of 
information on the amount of flow and the river 
network density because the area of the studied 
catchments is too small to develop such a net-
work. According to the authors’ best knowledge, 
there are no measurement data on strictly hydro-
logical processes, such as flow volume and water 
change time. Lange (1986) and Kalff (2001) sug-
gest calculating those parameters using lake mor-
phometry, but collected data already includes 
this information. We also omitted all factors that 
can be affected by the processes inside the lakes. 
Thus, the list of variables is limited only to stable 
variables over a long period; this eliminates fac-
tors that change seasonally (such as water tem-
perature) or in short-term cycles (i.e., weather 
conditions).

Fig. 1. Location of lakes and extent of the watershed on the study area.
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The list of variables presented in Table 1 is di-
vided into two groups. The first group includes 
morphometric parameters of lakes taken from 
The Atlas of Polish Lakes (Jańczak 1999) or ra-
tios calculated directly from those features. The 

second group includes watershed geometry, 
morphometric parameters, lithology and land 
cover of the catchment area. In the first step, wa-
tersheds were delineated over the 30 m resolu-
tion Digital Elevation Model (DEM) DETD Level 
2, (DEM in the rest of the paper) using GRASS 
GIS module r.stream.basins (Jasiewicz, Metz 
2011). Finally, the geometry of the watershed was 
directly used to calculate the structure of their 
coverages and contribute to Schindler (1977) and 
Ohle (1956) ratios that define the relationship be-
tween lake and watershed geometry.

The upper part contains variables describing 
lakes morphometry, the lower part watersheds 
parameters. Source ‘Atlas’ denote variables read 
from Jańczak (1999), source ‘Calculated’, means 
variables values were calculated using GIS 
software and spatial data. See text for details. 
Column ‘Abbreviation’ contains symbols used 
later in the text. Variables starting with L refer to 
lakes morphometry, variables starting with W- to 
catchment properties.

Information about the land cover, geolo-
gy, and basic morphometry of watersheds sur-
faces was obtained using Corine Land Cover 
(CLC) 2018 (EEA 2018) and Geological Map of 
Poland (GMP) 1:500,000 (Marks et al. 2006) was 
used to calculate coverage properties, includ-
ing land-cover/land-use and surface geology. 
Because both maps contain units with complex 
characteristics, they were simplified. CLC was 
reduced to first-level CLC units (urbanised, ag-
riculture, forest, and wetlands, excluding given 
lake), while GMP to basic lithological units (tills, 
sands, clays, and organic). The analysed group of 
lakes is located within one geomorphological di-
vision of the last glaciation thus, the stratigraphic 
distinction of the lithological unit was neglected. 
Coverage variables are expressed as a percentage 
of a given unit in the watershed area (WARE), 
separately for CLC and GMP. The DEM was used 
to calculate geomorphometric features such as 
watersheds height standard deviation (WHSD) 
and watersheds mean slope (WSLP) inclination 
of the terrain in the watersheds.

Methods

Our preliminary observations show that each 
of the single collected variables is weakly related 

Table 1. Explanatory variables used in the study.
Variable Abbreviation Unit Source

Elevation ELEV m a.s.l. Jańczak 1999

Lake area LARE ha Jańczak 1999

Lake capacity LCAP km3 Jańczak 1999

Lake max 
depth

LDMX m Jańczak 1999

Lake average 
depth

LDAV m Jańczak 1999

Lake max 
length

LLEN m Jańczak 1999

Lake max 
width

LWID m Jańczak 1999

Lake shoreline 
length

PRIM m Jańczak 1999

Lake 
elongation

LELN Ratio LLEN / LW ID

Lake 
capacity/ 
length ratio

LVAR Ratio LCAP / 
LLEN

Lake perim 
development

LPDV Ratio  LLEN / sqrt
(2 × π × LARE)

Lake 
exposition

LEXP Ratio LARE / 
LDAV

Watershed 
area

WARE ha Calculated

Mean slope WSLP % Calculated

Height 
stddev

WHSD m Calculated

Urbanised WURB % Calculated

Agriculture WAGR % Calculated

Forests WFRS % Calculated

Wetlands WWET % Calculated

Sands WSND % Calculated

Tills WTLS % Calculated

Clay WCLS % Calculated

Organic WORG % Calculated

Schindler 
ratio

SR Ratio WARE / LCAP

Ohle ratio OR Ratio WARE / 
LARE
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Fig. 2. Relations between Ptot and selected explanatory variables, see Table 1 for details.

Fig. 3. The outline of methodology. See Section ‘Methods’ for details.
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to the trophy of the lakes (Fig. 2). Such a situation 
precludes the creation of simple relations, such 
as trophy index variable. Our method involves 
four steps presented in Figure 3 and described 
below in detail: (1) Building a regression model: 
f: X → y; (2) Building a simplified model g: X’ → ŷ 
over the model, called the explainer; (3) finding a 
set of mapping functions: I: X → X’, i.e. variable 
influences; (4) dissimilarity analysis and cluster-
ing objects by X’.

Building a regression model

The first step is to build an explanatory regres-
sion model, f: X → y, where X is a set of explana-
tory variables (see also Table 1); f describes how 
the given variable Xi influences y; where y is an 
explained variable, here Ptot. We used a RF re-
gression model (Breiman 2001), commonly used 
in many ecological and natural studies (Hollister 
et al. 2016, Bourel, Segura 2018, Leach et al. 2018, 
Li et al. 2018). The RF is a machine learning algo-
rithm that grows a subset of the so-called weak 
predictors as shallow regression trees by boot-
strapping samples of the training set. Those trees 
are non-parametric models; thus, the entire RF 
does not require a prior assumption about the 
variable distribution. It means in practice that RF 
accepts X in original form without the preced-
ing transformation. Each tree grows recursively 
until it meets its stop criterion. At each step of 
growth, y is clustered in two child nodes to max-
imise y homogeneity inside these clusters. Then 
the best split on one of the X variables is select-
ed. The RF is a bagging algorithm, which means 
that each tree grows on the independent subset 
of cases and variables. The importance of each 
variable depends only on its potential for reduc-
ing mean squared error between actual values of 
y and the outcome ŷ. For that reason, namely the 
random selection of variables, RF is more suita-
ble for explanation than other machine learning 
algorithms.

Building the explainer

The second step of analysis includes the 
building of the explainer. Explainer g: X’ → ŷ is 
a transformation of a previously trained com-
plex model (here RF) into its interpretable ap-
proximation (Lundberg, Lee 2017), where X’ is a 

transformed X, and ŷ predicted values of y. All 
mentioned explainers assign an influence to each 
explanatory variable for a particular prediction 
– i.e., single case. The explanation process starts 
from the prediction when all values are set to 
their means. Next, for successive variables, their 
original values are restored. If variables are not 
independent, what happens almost always is 
that variables are restored is the order that mat-
ters. If two variables in a model are correlated, 
the first analysed variable will explain its more 
significant part of the model’s variability, while 
the role of the second variable will remain de-
preciated. If variables are restored in the oppo-
site order, the influence of those variables will 
also be different. For that reason, we decided on 
the core part of SHAP – a game theory concept 
of Shapely values (Shapely 1953), because this 
solution is not sensitive to the order of the varia-
bles selection. A unique advantage of the SHAP 
explainer is that it averages the influence across 
all possible orderings for a given prediction. In 
this way, the influence of the variable represents 
the mean change in the model prediction when 
conditioning on the given variable. An addi-
tional standard deviation of the change informs 
how a given variable is robust against variable 
ordering.

Finding variable influence

As a result, a vector of new values X’ now de-
scribes the data and represents the influence of 
the given feature on the final prediction. The in-
fluence is a mapping function, I: X → X’, where 
I denotes non-parametric mapping function, 
called the influence. In that way, X’ is a set of 
mean Shapely numbers that thus describe how 
variables influence the outcome. X’ can be posi-
tive, negative or indifferent (Fig. 4). The influence 
of each variable can be presented in the form of 
an influence plot, where the x-axis contains origi-
nal values and y the range of the influences. Each 
case is represented by a single dot at x and y. The 
I: X → X’ is in close correspondence with partial 
dependence plots (PDP) – (Friedman 2001), such 
that for each specific variable, influence values ar-
range along the PDP line. If a dependent variable 
y is standardised, i.e., mean is at 0 and values are 
represented in units of y standard deviation, both 
the PDP lines and the influence values acquire 
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particular property: all X’ values are scaled in the 
same range, relative to the variable importance. 
The I: X → X’ transformation scales the new val-
ues to the same scope as y. Thus, 0 means that the 
given variable does not influence ŷ for the given 
case. Values other than zero, positive or negative, 
determine the increasing or decreasing ŷ, in units 
of Ptot standard deviation.

The influence plots (Fig. 4) show the relations 
between X and X’ and detects sections where 
the influence is positive, negative, or indifferent 
(no influence). Such an approach extends the 
notion of variable importance (Jones et al. 2004, 
Håkanson 2005, Genuer et al. 2010, Leach et al. 
2018) and provides new insights into the rela-
tions between the studied complex system and 
the factors that shape it. If the plot identifies the 
result of clustering, it also allows for identifying 
sets of cases for which the variable is significant 
(in the form of positive or negative influence) and 
cases for which the variable is not. The range of 
variability of individual variables determines the 
scale of the impact. The greater the difference in 
values, the more significant a given variable’s 
role in the explanatory model.

Dissimilarity analysis and clustering objects

The influence plots provide information on 
two levels. The first is the variable level, and it 
describes how changes of the variable impact 

the outcome in the given range of variable val-
ues. Moreover, the range of the y-axis (influence) 
is proportional to variable importance. The sec-
ond is the case (individual object) level– the X’i 
is calculated for each case (i.e., lake) separately 
and describes how each factor with a given value 
contributes to the value of the ŷ.

Clustering is a process of searching for sim-
ilarities between natural objects and separat-
ing them into smaller yet consistent groups. 
Sometimes, preliminary clustering is used to im-
prove the regression models (Kocev et al. 2020). 
Such clusters, however, only reflect the variabil-
ity inside the set of explanatory variables; thus, 
the relationship between independent and de-
pendent variables cannot be inputted into the 
unsupervised model. On the other hand, regres-
sion models by themselves cannot provide un-
known information from the training data and 
cannot cluster the data by discovering their fea-
tures independently. In that way, the zero-mean 
and relative to y values of X’ are essential for fur-
ther clustering: the most influencing variables 
with the highest range of X’ contribute most to 
the dissimilarity between objects, and the im-
pact of the minor influencing variables is weak 
or negligible. It means that preceding arbitrary 
variable selection is unwanted, and the clusters 
will include the distribution of the dependent 
variable.

Fig. 4. The concept of mapping variable values into 
influence. The size of dots simulates the values of the 

dependent variable.

Fig. 5. Relation between actual values of dependent 
variables and the outcome of the model Ptot.
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Results

Model quality

Because RF does not require any assumptions 
about data distribution, that part of the data 
remained in its original form. The explained 
Ptot variable was transformed into normal-like 

distribution with Yeo and Johnson’s (2000) pow-
er transformation. Power transformation stabi-
lises variance and transforms data into Z-score 
form. Such a transformation is necessary to 
correctly estimate the influence of individual 
variables in a uniform unit, i.e., in proportion 
to the explained variable’s standard deviation. 
Forasmuch the primary goal of the model is an 

Fig. 6. Relation between clusters and variable influence. The red-white-blue gradient denotes the influence of 
the given variable. The colours marking the clusters are used in the same way in the other figures.
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analysis of existing data set, not a prediction on 
a new data; the model was trained and tested 
on the entire data set with specific hyper-param-
eters: the depth of the trees was reduced to 3, 
and the number of trees to 50 and the number 
of cases and variables selected to train each tree 
was reduced to 0.3. In the result, the root mean 
square error (RMSE) of the model was higher 
than for the best set of tuned parameters, but 
such structure of the learner guarantees that 
the role of less significant variables will not be 
omitted. RF is a stochastic algorithm, so we have 
trained 3000 candidates and selected the best 
fitted, with the lowest achieved RMSE. The sto-
chastic nature of the RF model causes the results 
of each execution to differ slightly; nevertheless, 
the list of the most influential variables remains 
the same.

The X’ → ŷ is the basis for the reasoning, 
namely the influence describes ŷ not y, so the 
quality of conclusions is a derivative of the qual-
ity of the prediction. This is the main limitation 
of this method. The relation y~ŷ depends on the 
information about y carried by X. If X does not 
contain key variables for modelling y, the mod-
el has low performance and the error of y~ŷ is 
the main part of the uncertainty of conclusions. 
Moreover, such a model only reveals a statisti-
cal relationship between the variables and the 
outcome, which does not yet imply a physical 
dependency.

Therefore, the first step is to assess the quality 
of the model. Figure 5 shows the relationship be-
tween the actual values of Ptot to the values mod-
elled by the RF model. The quality of the mod-
el is moderate. The correlation between actual 
and outcome is very high (R2 = 0.92), the RMSE 
value is 0.37 of transformed variable standard 

deviation. It means that collected variables do not 
describe approximately one-third of the standard 
deviation. The remaining part of the Ptot variabili-
ty is most likely the result of processes inside the 
ecosystems of individual lakes.

Figure 6 presents the result of clustering in the 
form of a cluster map, where x − axis contains all 
explanatory variables ordered by their impor-
tance, e.g. contribution to explainer and y − axis 
is ordered by clustering results. The dendro-
gram was cut at 0.85 providing five classes of Ptot 
concentration: one with high values, three with 
moderate values, and one, the largest, containing 
lakes with the lowest values (Fig. 6). The cluster 
containing lakes with the highest values of Ptot 
was labelled as High; three Moderate clusters as 
Mod.-I, Mod.-II, Mod.-III; and the last as Low. 
Figure 7 also shows that the quartile range par-
tially refers to the classification of OECD, respec-
tively, such as high to eutrophic-mesotrophic, 
moderate to mesotrophic, and low to oligotroph-
ic and ultra-oligotrophic, but some lakes do not 
fit fully to OECD scheme.

The role of individual variables

Figure 8 allows one to analyse I: X → X’ for 
each variable and each lake. A partial depend-
ency plot is a tool that allows for tracking the 
generalised impact of variable values on the out-
come, but Shapely numbers show the individual 
impact of each variable for each case (i.e., lake). 
I: X → X’ corresponds to PDP, but these relation-
ships get weaker as the variables’ importance de-
creases, so with the least important variables, the 
relationship is barely noticeable. The correspond-
ence between variable values and their influence 
is not always linear, and its dynamics presents 
new knowledge unavailable with other machine 
learning (ML) methods but often concordant 
with intuition and common sense.

The I: X → X’ plots show that these relation-
ships can be very different. The X’ of several 
variables: Ohle rat. (OR), Schindler rat. (SR), 
Urbanised (WURB) and Basin Area (WARE) or 
Lake Depth Max (LDMX) shows a bimodal dis-
tribution, with a clear threshold value. Other 
variables, like Wetlands (WWET), Tills (WTLS), 
or Agriculture (WAGR) show linear depend-
ency or have an inflection point. The X’ of the 
last ten variables is minimal, within the range 

Fig. 7. Variation of Ptot in clusters. X-labels denote 
the name of the class: High trophy, Moderate trophy 

(Mod.-I, Mod.-II, Mod.-III), and Low trophy.
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of 0.02–0.05 of Ptot standard deviation, and thus 
their internal structure has a weak interpretative 
value. Especially for the last four variables, there 
is no functional relationship between the value 
of its feature and the effect on the ŷ. While the 
linear I: X → X’ are easy to follow, non-linear re-
lationships require more attention. Although a 
detailed analysis of this phenomenon is beyond 
the scope of this paper, it should be noted that 
the occurrence of threshold values or at least 
changes in the trend requires the searching for 
natural processes with similar characteristics. 
Surface runoff can be such a process, primarily 
when runoff is caused by short-duration intense 
storms (Kandel et al. 2004). Also, Guan et al. 
(2016) noticed the bimodal nature of minor and 
major rainfall events.

The structure of clusters

We decided to use hierarchical clustering 
(AHP) with euclidean dissimilarity and Ward 
linkage since such parameters gave the most 
interpretative clusters and allowed for easy ex-
ploration of possible sub-clusters. The first three 
steps, i.e.: the transformation of the explanatory 
model f into explainer g and then the explanatory 
variables X into the influence of X’ is automatic 
and does not require parameters. Since X’ is in 
the z-score-like form, the scope of each variable 
is proportional to its role. Thus, X’ can be used di-
rectly to calculate the dissimilarity between lakes 
without prior scaling, and dissimilarity matrix d 
subjects to the clustering process. The selection 
of a number of classes is an entirely arbitrary 
decision made after analysing the dendrogram 
structure.

The clustering process reveals the main nov-
elty of the proposed method. A typical cluster-
ing process minimises differences within clusters 
and maximises differences between them. For 
this reason, each grouping process requires the 
prior selection of a limited number of variables, 
which are preferably not correlated with each 
other. In our method, the clusters do not mean 
lakes with similar characteristics, but rather a 
group of objects where the content of Ptot in the 
water is shaped in a similar way. The latter re-
sults follow directly from the fact that the clus-
tering process uses functional dependencies be-
tween the lakes features and the content of Ptot in 

the water. As a result, the coherence of the value 
of the dependent variable is a natural feature of 
the generated clusters. The most interesting fact 
is the way each of these classes is explained. The 
structure clusters show that values in moderate 
clusters have a similar trophy level but this value 
results from different processes. It is also note-
worthy that arranging the variables according to 
their importance reveals that the first nine varia-
bles have a real influence on Ptot, while the last ten 
has no real impact on this trophy index.

The role of variables in explaining the Ptot val-
ue can be traced both for classes and individually 
for each lake. To illustrate the five clusters, the 
most representative lakes were selected, where 
the selection criterion was the Ptot and the small-
est difference between y and ŷ for a given cluster. 
The SHAP plot (Fig. 9) clearly shows the impact 
of each feature on modelled Ptot.

High trophy class
The high value of the Ptot index is the effect of 

the synergy of the five most significant variables: 
OR, WWET, SR, WURB, and WARE. There is a 
trace, positive role of LDMX, elevation (ELEV) 
and Hights Stddev (WHSD), lake exposition 
(LEXP) and WTLS’s negative role. The remaining 
variables do not affect the trophy index.

Moderate trophy I class
The value of the Ptot index in this class results 

from the synergy of the first three variables: 
OR, WWET and SR, and the secondary role of 
LEXP, WTLS, and LDMX. Mainly the WURB, 
ELEV, and WHSD values have a negative effect. 
The influence of the other variables is mutually 
exclusive.

Moderate trophy II class
This class also includes major mesotrophic 

lakes, but the Ptot value results from the posi-
tive impact of the U variable and the synergy of 
less significant variables: LEXP, WTLT, LDMX, 
ELEV, and Forests (WFRS). The values of OR and 
SR have a negative effect, but they cannot bal-
ance the positive impact of the other variables. In 
the analysed case of Lake Sunowo, the positive 
influence of the variables Lake Area (LARE) and 
Lake Depth Average (LDAV) is also visible, but 
this is not a feature of the whole class, but only 
this case.
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Moderate trophy III class
In the case of this class, the Ptot value is the 

effect of the positive influence of variables with 
a lower influence: LEXP, WTLS, LDMX, Sands 
(WSND), and ELEV also have a significant influ-
ence on the Ptot value in the case of Lake Kiersuń, 
which is also not a feature of the whole class. The 

four most influential variables in this class have a 
negative impact, but the impact is not significant.

Low trophy class
The last class, including lakes with the lowest 

trophic index values, results from a strong nega-
tive impact of the six most significant variables: 

Fig. 8. The influence plots for each variable. The X-axis contains the original values of the variable, Y-axis 
contains the influence. Colours in legend denote clusters (see Fig. 7), size of dots value of Ptot. Partial 

Dependency Plot (PDP) is marked by a light grey line.
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OR, WWET, SR, WURB, LARE, and LEXP. The 
positive impact of WTLS, LDM, and WSND is 
noted only in selected cases, and in the analysed 
case of Dmitrowo lakes, the effect of LDMX is 
negative.

Regardless of the dissimilarity of patterns re-
lated to specific values of the Ptot index, all cases 
in each trophy group share features. When the 
concentration of Ptot is high, it results from a pos-
itive synergy of the most influential variables; 
the remaining variables have only a trace effect. 
Lakes with a moderate concentration of Ptot are 
positively influenced by several variables – dif-
ferent in different groups, and few variables with 
a negative impact slightly reduce this positive in-
fluence. The low concentration of Ptot is an effect 
of the negative synergy of the most important 
variables, slightly balanced by the influence of 
less essential features.

Discussion

Variable importance

The proposed method allows for a compre-
hensive assessment of the influence of selected 
variables on the share of Ptot in water. However, 
it should be examined how this approach differs 

from other methods used in lake studies, name-
ly multiple linear regression (LR) (Su et al. 2011, 
Staehr et al. 2012) and RF (Genuer et al. 2010). 
Those methods are commonly used to select 
significant variables (Li et al. 2016, 2017, Bourel, 
Segura 2018). From existing methods of LRs, we 
used ElasticNet, a LR model extended by regu-
larisation, a technique that adds a penalty to the 
model parameters when the model complexity 
increases. In simple words, when the coefficients 
are either very high or very low, ElasticNet elim-
inates those features from the model and shows 
no relationship between a given explanatory var-
iable and the response variable. The final model 
is described then, only by those variables that ex-
plain the main trends of the model, while vari-
ables introducing the noise are eliminated. The 
RF model is the core of the presented method, 
so the order of variable importance is identical 
to our method. The value of importance indi-
cates so-called impurity (or Gini) importance, a 
normalised total reduction of the error brought 
by that variable. Thus, if the selected variables 
significantly reduce the error, but only for se-
lected cases, the role of such a variable may be 
overestimated.

The RF importance describes only the im-
portance of variables without the informa-
tion about the direction: whether the variable 

Fig. 9. The SHAP (SHapley Additive exPlanations) plots (Lundberg, Lee 2017) for the five most representative 
lakes for each class. X-axis presents influence in units of Ptot standard deviation scale is the same for each 

subplot, but ranges are different. Length and direction of arrows denote the scale and influence orientation 
(negative or positive) brought by a given variable.
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generally increases or decreases the modelled 
value. Compared to RF, the LR model provides 
more information because it also includes the 
signs of coefficients. After removing least-in-
formative variables, the sign shows whether the 
variable increases or decreases the outcome and 
the coefficient value is somehow related to the in-
tensity of this factor.

Figure 10 shows the evaluation results of the 
importance of the variables for both models. 
Values of linear coefficient (slopes) of the LR mod-
el and Gini importance of RF cannot be compared 

by numbers, but both methods indicate more or 
less the same subset of variables. The value of the 
coefficient sign follows the orientation of the in-
fluence plots in Figure 8. Nevertheless, the var-
iables indicated by LR show rather the strength 
of the general relationship between a given ex-
planatory variable and the explained variable. 
Thus, linear models may overestimate the role of 
variables for which there is a linear relationship 
(even very weak) with the explained variable at 
the expense of the variables whose influence is 
significant but not linear.

Fig. 10. The variable importance estimated using multiple linear regression (ElasticNet) and random forest. See 
text for details.
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Analysis of dissimilarity inside original and 
transformed data

The goal of clustering is to identify stable 
groups in a dataset. The purpose of the compar-
ison is to check whether grouping only the orig-
inal explanatory variables will allow to identify 
groups of lakes with a similar trophy. As the clus-
tering technique is not crucial for the entire meth-
od, multidimensional scaling (MDS) was used for 

comparative analysis. The MDS is an ordination 
technique, a form of non-linear dimensionality 
reduction that maps distances between objects in 
original multidimensional spaces into lower-di-
mensional space positions, preserving original 
dissimilarities as much as possible (Cox, Cox 
2000). The d was calculated for z-scored X varia-
bles and in our method d’ using X’ directly. Due 
to a large number of variables (high dimension-
ality), and to avoid the curse of dimensionality, 

Fig. 11. Visualisation of dissimilarities between lakes in a form of MDS (multidimensional scaling). The axes 
of the plot have no units. Lakes morphometry presents dissimilarity for a group of morphometric features 

(see Table 1); Land cover presents dissimilarity for four land cover variables (urbanised, agriculture, forests, 
wetlands); ‘All variables’ plate uses all 25 variables; Influence presents dissimilarity between lakes in a space of 

variables influence. For colours see Figure 7.
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we used the L1 (‘Cityblock’) metric, which is 
preferable for high dimensional applications to 
the default L2 (‘Euclidean’) metric (Aggarwal et 
al. 2001). Figure 11 shows city block dissimilarity 
between lakes and the value of the Ptot index.

Three cases were analysed: an ordination us-
ing all variables and two ordinances for a sub-
set of variables describing land cover and lakes’ 
morphometry. The ordination with all variables 
shows an amorphous structure and does not re-
veal Ptot variability gradient. The ordinance per-
formed for both subsets also does not show sep-
arate clusters, but there were gradients of trophic 
changes along the horizontal dimension: nega-
tive for morphometry and positive for land cov-
er. The appearance of these gradients is related 
to the role of LDMX and WARE variables in the 
subgroup of morphometric variables, and WURB 
and WWET in the land cover group. The ordi-
nance based on d’ shows distinct clusters with 
similar values of Ptot indices. Only Low trophy 
class and Mod.-III class are not separated. This 
lack of separation is a consequence of the struc-
ture of both clusters. In the Mod-III class, the five 
most important variables have a negative im-
pact on the Ptot index as in the Low-trophy class. 
However, in the latter class, this impact is defi-
nitely more substantial.

Conclusions

The paper proposes a new, complex method 
of data analysis, classified as EML. This method 
allows for a detailed visual analysis of complex 
nonlinear regressors and introduces a new con-
cept: variable influence. The latter is a transfor-
mation of the set of explanatory variables into a 
form describing the influence of a given variable 
on the modelled feature. Such a transformation 
makes it possible to group data based on the 
functional relations between the explanatory var-
iables and the explained variable instead of the 
variation in the explanatory variables only. This 
is also the limitation of the method because its 
quality depends on the performance of the mod-
el. The method was developed to explain the Ptot 
index for the group of glacial lakes in north-east-
ern Poland. As part of the analysis, complex non-
linear factors shaping the Ptot of individual lakes 

were detected. On this basis, lakes were grouped 
into five clusters showing similar values of tro-
phy. In each of the classes, the trophy is the effect 
of synergy between different groups of factors. 
The method of LR and RF was compared, and it 
was shown that it combines the advantages of 
both – the proposed method allows to precisely 
determine the real impact of each variable and 
the relationship between the explanatory and ex-
plained variable.

Nonlinear relationships between the vari-
ables and the value of the impact are related 
to nonlinear natural processes – for example, 
the bimodal distribution of rainfall intensity. 
However, this problem requires a separate, ded-
icated research. The cluster analysis showed that 
the studied lakes could be divided into several 
clusters, where the Ptot value is shaped similarly. 
This means that there is no single pattern, on how 
the watershed influences the content of Ptot but 
rather a few repeating patterns representing the 
studied phenomenon of the trophy value. There 
are five classes, one for lakes with high and low 
trophies and three classes with medium trophies, 
where the Ptot index is shaped differently in each. 
Such a conclusion can have potential value for 
protecting and managing limnic environments. 
Although the method has been developed for the 
problems of lake ecology, its application seems 
to be more comprehensive and can be applied 
wherever complex; multivariate numerical mod-
els can be used.
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