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abStRact: This study aims to investigate crop selection and spatial patterns of agricultural fields in a drought-affected 
region in Isfahan Province, central Iran. Based on field surveys portraying growth stages of the main crops including 
wheat, alfalfa, vegetables and fruit trees, three Landsat 8 operational land imager (OLI) images were acquired on March 
15 (L1), June 27 (L2) and October 1 (L3), 2015. After performing radiometric and atmospheric corrections, Normalized 
Difference Vegetation Index (NDVI) maps of the images were produced and introduced to the Multi-Resolution Seg-
mentation algorithm to delineate agricultural fields. An NDVI-based decision algorithm was then developed to iden-
tify crops devoted to each field. Finally, a set of landscape metrics including Number of Patches (NP), mean patch size 
(MPS), mean shape index (MSI), perimeter-to-area ratio (PARA) and Euclidian Nearest Neighborhood Distance (ENN) 
was utilized to evaluate their respective spatial formation. The results showed that nearly 46% of fields are devoted 
to wheat indicating that the landscape has been dramatically shifted towards wheat monoculture farming. Moreover, 
the farmers’ inclination to grow crops in large fields (approximate area of 1 ha) with more regular geometric shapes 
are considered as an effective way of optimising water use efficiency in areas experiencing significant water shortage.
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Introduction

Land use planning and management are fun-
damental to sustainable development (Godschalk 
2004) and this task can be well accomplished if 
decisions are supported by reliable and updat-
ed information (Collier 2015, Van Knippenberg 
et al. 2015). In this case, an important milestone 

was reached in the second half of the 20th century 
when space-borne Remote Sensing (RS) and com-
puter-based geographical information system 
(GIS) techniques were remarkably advanced and 
integrated, which can produce huge quantities of 
spatial data from local to global levels in a short 
time (Aronoff 2005). These quickly and accurately 
processed data are specifically beneficial for the 
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management of highly spatially and temporally 
dynamic land uses such as agricultural land use 
(Nikolaos 2015, Asgarian et al. 2016, Hassan et 
al. 2017). Agriculture, is one of the first and most 
important types of land use, which consumes the 
largest portion of the world’s freshwater supply, 
with nearly 80% (Ding et al. 2007), and more than 
other uses of land are in direct interaction with 
environmental parameters such as soil, water and 
climate (Bedada et al. 2016). The world’s popu-
lation growth is estimated to continue at its high 
rate until the mid-21st century and it will inevita-
bly add additional pressure on agricultural land 
resources to produce more food (Ma, Ma 2017).

These descriptions indicate an alarming sig-
nal concerning agricultural activities, especial-
ly in arid and semi-arid regions of developing 
countries where the unavailability of reliable 
data serves as an important barrier in achieving 
agricultural land use planning objectives (Rhee 
et al. 2010). Accordingly, raising the knowledge 
about the location and type of crop cultivated as 
well as the spatial pattern of agricultural fields 
are essential to outline a sustainable agricultur-
al land use planning paradigm (Saroinsong et 
al. 2007, Rahman, Saha 2008). In this regard, RS 
techniques have allowed land-use managers and 
decision makers to identify cropping pattern 
systems (Khan et al. 2010, Foerster et al. 2012), 
forecast yield before harvest time (Bolton, Friedl 
2013), improve agricultural and crop marketing 
performance (Howitt et al. 2014) and, in some cas-
es, determine the performance of crop production 
concerning site-specific soil and water resources 
(Bandyopadhyay et al. 2009). In addition to data 
provided by RS techniques, they also require in-
formation about the spatial pattern of agricultur-
al fields to better formulate agricultural land use 
plans. In the context of agricultural land use plan-
ning, White and Roy (2015) and Pishgar-Komleh 
et al. (2012) discuss that the degree of mechanisa-
tion and fuel energy consumption should be opti-
mized according to the size of agricultural fields.

Object-based image analysis (OBIA) is one of 
the most precise techniques of delineating land use 
and land cover (LULC) maps from air- and space-
borne imagery data (Blaschke 2010). Initially, this 
technique attempts to aggregate neighbouring 
pixels into a cluster, also known as an object or 
a segment, based on some similar spectral and/
or spatial characteristics and, in contrast to other 

traditional techniques, it relies on the character-
istics of the objects (not pixels) to conduct an im-
age classification task (Blaschke 2010). In our case, 
Peña et al. (2014), Aguilar et al. (2015) and Li et 
al. (2015) have tested the performance of OBIA 
techniques in the identification and classifica-
tion of crop types using various image sources 
and in different locations and found that OBIA 
techniques, as a new technique in RS, are highly 
successful in crop type mapping. Following that, 
other studies such as Abraham (2015) attempted 
to extract more spatial information from the ob-
jects such as the size, geometry (structure) and 
overall spatial formation of fields in a landscape 
through the application of landscape metrics (also 
known as spatial metrics). Landscape metrics are 
algorithms for quantifying the spatial proper-
ties of patches, classes, or mosaics of the entire 
landscape. Landscape metrics are a suitable tool 
for designing and finding the exact relationship 
between the structure and performance of differ-
ent land uses (Abraham 2015). To date, a broad 
range of landscape metrics have been developed 
and used to quantify almost every facet of the dis-
tribution and structure of land parcels and have 
been widely utilised in various scientific disci-
plines (Farina 2008, McGarigal 2017).

Based on the above-mentioned descriptions, 
an attempt is made in this research to identify 
and classify crop types and quantify the spatial 
pattern of fields in a drought-affected agricultur-
al landscape in central Iran which suffers from a 
lack of updated and reliable data for appropriate 
implementation of agricultural land use plans. 
Accordingly, an OBIA technique with the use of 
multi-temporal Landsat 8 imagery data was first 
utilised to classify the main crop types into four 
classes including wheat, alfalfa, fruit tree and veg-
etable. In doing so, an attempt was also made to 
analyse in a way that a given object reflects a cer-
tain field. This was of great help to further investi-
gate the composition, structure and configuration 
of agricultural fields devoted to each crop type.

Material and methods

Study area

Segzi Hydrological Unit in Isfahan Province, 
central Iran was selected as the case study area. 
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This region spans over 32°40′ to 32°65′ N longi-
tude and 51°49′ to 52°26′ E latitude and covers an 
area of about 90,870 ha. One of the most notable 
characteristics of this area is the zayandeh-Rood 
River which enters the region from the west and 
after traversing approximately 80 km inside the 
study area and reaches the Gavkhooni Wetland 
in the east. This river is the main water source for 
agricultural, municipal and industrial activities 
in the Segzi Hydrological Unit. In central parts, 
this region consists of deep, moderately drained 
and fertile, fine to moderately grained soils with 
loam, clay loam and, in some small parts, sandy 
texture (Soffianian et al. 2013). Based on the ag-
ricultural land suitability model developed by 
Makhdoom Farkhondeh (2013) for Iranian terri-
tories, these characteristics represent a medium 
potential for irrigated crop production.

From a climatic point of view, this region 
is characterised by an arid and semi-arid cli-
mate with cold winters and dry, hot summers. 
Precipitation is rare but mostly occurs in late 
fall and winter and ranges from 50 to <150 mm 
(Iranian Bureau of Statistics 2011). Crop produc-
tion is the main use of land, located exclusively 
near the river. More than 160 thousand people 
have inhabited this area which due to its adjacen-
cy to the Isfahan city – the third-most populated 
city of Iran near the northwestern boundary of 
the region – are growing at a high annual rate 

of 1.6% (Iranian Bureau of Statistics 2011). Due 
to the recent multi-year severe drought in cen-
tral Iran and the consequent sharp decrease in 
freshwater supplies, agricultural activities have 
now massively shifted towards crops with fewer 
water requirements such as wheat. Figure 1 illus-
trates the layout of the Segzi Hydrological Unit in 
Isfahan Province, central Iran.

Crop type mapping

Field investigation
Wheat, barley, alfalfa, fruit trees and vegeta-

bles (including sugar beet, lettuce and cabbage) 
were recognised as the main crop types through 
field surveys and interviews of local farmers and 
experts. From the standpoint of growth stages, 
wheat and barley (hereafter only termed wheat) 
and alfalfa begin to grow clearly in early March 
when the mean daily temperature reaches above 
10°C. Soon after in mid-March, fruit trees start to 
grow new leaves. In late April, alfalfa and fruit 
trees reach their full growth. Wheat matures 
by mid-June and is totally harvested across the 
region. In July, some new fields are selected to 
grow vegetables. At the beginning of fall, farm-
ers start to harvest vegetables and then fruit trees 
and alfalfa start hibernating for the winter sea-
son. This cropping system is repeated annually 
in this region (Iranian Bureau of Statistics 2011).

Fig. 1. The layout of the Segzi Hydrological Unit in Isfahan Province, central Iran.
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The steps taken in this study are summarised 
below.
1. Identifying the area of agricultural lands us-

ing multi-time segmentation techniques,
2. Designing a decision tree for allocating any 

type of cultivation to agricultural lands,
3. Using land features to quantify the structure 

and spatial arrangement of crops.

Image selection and preparation
Operational Land Imager (OLI) is the most 

advanced sensor of the Landsat satellite series. 
This sensor is carried on Landsat 8 (launched in 
February 2013) and, similar to its antecedent sen-
sors (TM: Thematic Mapper/ETM+:Enhanced 
Thematic Mapper Plus), is designed to identify 
and monitor the earth’s green surface like agri-
cultural land areas (Roy et al. 2014). Image acqui-
sition in a 16-day time interval and the accord-
ance of its spatial resolution (pixel spacing of 
30 m) with the size of agricultural fields of the 
study site (approximately 1 ha) were the main 
reasons for using Landsat 8 OLI images.

Selecting satellite images in terms of the time 
and season in which they have been taken is 
very important, and the proper time and season 
should be chosen considering the phenology of 
the crops. Synchronisation of imaging with the 
stage of vegetation growth is crucial. Changes 
in chlorophyll concentration of leaves of some 
plants occurred in periods. Therefore, the differ-
ence in chlorophyll concentration leads to the dif-
ference in their reflections. Therefore, this period 
can be an appropriate criterion to distinguish 
the cultivated plant types. The quality of imag-
es and atmospheric conditions should be also 
considered in choosing the images. According 
to the crop growing patterns depicted in Section 
‘Field investigation’, three Landsat 8 OLI tiles 
were acquired on March 15 (L1), June 27 (L2) and 
October 1 (L3), 2015.

Radiometric and atmospheric corrections 
were performed to improve the quality of the 
images’ bands. To conduct radiometric correc-
tion, Equation 1 was first used to calculate Top 
of Atmosphere (TOA) reflectance without cor-
rection for solar angle (ρλ) where Qcal  represents 
pixel values (Digital numbers) and Mρ  and Aρ  are 
band-specific multiplicative and additive rescal-
ing factors, respectively (Markham et al. 2014). 
Afterwards, equation 2 was utilised to correct the 

solar angle where ρλ is TOA reflectance and θSE  
denotes the sun elevation angle in the center of 
the image scene (Markham et al. 2014). All nu-
merical values of the parameters used in these 
equations are provided in the product metadata 
file.

 ρ  = M Q  + Aλ ρ cal ρ  (1)

 

ρλ
sin(θ )SE

ρ  =λ

 (2)

The dark pixel subtraction method (Chavez 
1996) was then employed to correct the effect 
of aerosols on TOA reflectance. Based on the 
assumption of this method, for each image, the 
lowest reflectance value of the darkest pixel in 
the near-infrared band (841–876 nm) was detect-
ed (i.e. minimum reflectance value of deep-water 
pixels over the zayandeh-Rood Dam’s reservoir), 
and then, the resulting value was deducted from 
the TOA reflectance values of all bands to correct 
for atmospheric distortions. It should be noted 
that Landsat L1T products have been automati-
cally ortho-rectified using GCPs (Ground Control 
Points) and DEM (Digital Elevatin Model) layers 
and thus no geometric calibration is performed 
(Roy et al. 2010).

The following types of software, namely ver-
sion 5.1 of ENVI (Environment for Visualizing 
Images (image processing software; Research 
Systems, Inc.)) and version 4 of eCognition were 
used to identify lands under cultivation and 
their cultivation patterns, and for separation of 
agricultural lands under object-oriented meth-
ods (land segmentation), respectively. Finally, to 
quantify the area of agricultural lands and com-
pare them with each other, the landform meas-
ures embedded in version 4.1 of Fragstats soft-
ware were used.

Crop identification and classification
Multi-temporal segmentation analysis was 

used to delineate agricultural fields. This meth-
od is basically designed to detect objects repre-
senting high temporal-spectral variability, such 
as croplands (Anders et al. 2013). Previous re-
search findings showed that multi-temporal seg-
mentation analysis leads to better segmentation 
results when relying on a small subset of bands 
(Tong Yang et al. 2015) or some spectral indices 
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(Dutrieux et al. 2016). According to these sugges-
tions and due to the importance of vegetation 
cover in this research, the Normalised Difference 
Vegetation Index (NDVI) maps were produced 
from the images and used to inform the seg-
mentation algorithm (three NDVI maps). NDVI 
is one of the most well-known and widely used 
vegetation indices which in its ability in detection 
and monitoring of croplands have been well jus-
tified in the scientific communities (Mulla 2013). 
This index is calculated by replacing the pre-pro-
cessed red (Red: 0.63–0.69 µm) and near-infra-
red bands (NIR-0.76–0.90 µm) into Equation 3 
(Aronoff 2005).

 
NDVI =

NIR − Red
NIR + Red  

(3)

A multi-resolution segmentation algorithm 
(Baatz, Schäpe 2000), which controls colour, scale 
and shape parameters was used to extract objects 
from the NDVI layers (Bihamta Toosi et al. 2020). 
The mean of NDVI values was considered as the 
color parameter. The value of 1 ha reflecting the 
approximate size of agricultural lands across 
the study location was considered as the scale 
parameter. This value is selected based on long-
term field surveys and interpretation of aerial 
photographs, but some studies such as Möller et 
al. (2007) and Weidner (2008) showed that this 
parameter can be also identified through some 
quantitative techniques. In the case of the shape 
parameter, our objective was to generate rectan-
gular objects with lengths three times greater 
than the width (Asgarian et al. 2016).

Crop types were classified relying on the mean 
of NDVI values. Estimating the NDVI threshold 
was done according to the parameters of shape, 
texture, and adjacent complications and the ex-
tracted values. In each NDVI map, objects with 
a mean NDVI value of >0.185 were coded 1 as 
cropped fields and coded 0 otherwise. Taken all 
NDVI layers together, objects with mean NDVI 
values >0.185 in the L1, L2 and L3 images were 
coded 111, and coded 000 otherwise. Based on 
the results of field investigation and phenologi-
cal stages given in section 2.2.1, objects with code 
110 show areas under wheat cultivation because, 
in comparison to the other crop types, wheat 
has a significant vegetation cover in the L1 and 
L2 images (code 11*) and at the time of the L3, it 

has been completely harvested across the region 
(code **0). Objects coded 111 represent alfalfa 
fields which are green over the whole time peri-
od. Code 011 and 001 indicate fruit tree and vege-
table classes which begin their vegetative growth 
before the acquisition time of the L2 and L3 imag-
es, respectively. Table 1 shows a summary of the 
classification scheme used in this research.

Finally, a polygon-level confusion matrix 
was constructed to assess the accuracy of the 
image classification process. Several studies 
showed that polygon-level accuracy assessment 
provides more reliable results since it tends to 
remove errors made by pixel-level accuracy as-
sessment such as positional error (Lunetta, Lyon 
2004). Validation was performed using the con-
trol points which were recorded during the field 
survey using GPS (Global Positioning System) 
(Garmin 629sc). We totally collected 860 control 
points for different crops, from which 50% were 
randomly selected and used as training samples 
for image processing, and the remaining 50% 
were used for validation. As mentioned, during 
the field survey, we collected >100 control points 
by GPS for each type of cropland. They have in-
cluded 222 points for wheat, 137 points for alfal-
fa, and 543 points for other croplands. To identify 
agricultural lands, we utilised the recorded con-
trol points and Google earth imageries.

Some points with randomly selected fields 
were digitised by google earth imageries and 
used to construct the confusion matrix. Kappa 
coefficient, Overall Accuracy, Omission error and 
Commission error were calculated to evaluate 
the performance of image classification (Aronoff 
2005).

Quantifying the structure and spatial pattern 
of croplands

In this section, a set of class-level landscape 
metrics was used to explore the composition, spa-
tial structure and configuration of fields devoted 

Table 1. The classification scheme is used to recognise 
crop types.

Crop type
Object code

Final code
L1 L2 L3

Wheat 1 1 0 110
Alfalfa 1 1 1 111
Fruit tree 0 1 1 011
Vegetable 0 0 1 001
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to the cultivation of each crop type. Landscape 
metrics were chosen based on literature review 
(Southworth et al. 2002, Hendrickx et al. 2007, 
Leitão et al. 2012) and also the interpretation of 
their ability in measuring various spatial aspects. 
Additionally, based on the literature review, the 
used metrics were selected based on similar stud-
ies that used similar metrics with low correlation 
(Bozorgi et al. 2020). The number of patches (NPs) 
and mean patch size (MPS), as non-spatial land-
scape metrics, were selected to measure the com-
position of cropped fields. In the case of spatial 
structure, mean shape index (MSI) and perim-
eter-to-area ratio (PARA) was used to produce 
information about the geometry of agricultural 
fields allocated to each crop type, and Euclidian 

Nearest Neighborhood Distance (ENN) was used 
to evaluate the spatial configuration of fields. The 
metrics are fully described by McGarigal et al. 
(1995) and embedded in the free Fragstats soft-
ware. Table 2 gives a brief description of the land-
scape metrics used in this research.

Results

After performing radiometric and atmospheric 
corrections, NDVI layers were introduced to the 
Multi-Resolution Segmentation to delineate agri-
cultural fields. Wheat, alfalfa, fruit tree and veg-
etable classes were identified based on the mean 
NDVI values of objects and information provided 

Table 2. Description of landscape metrics used in this research, adapted from Leitão et al. (2012).
Landscape metric Acronym Aspect of pattern Range [unit]

Number of patches NP Composition NP > 0, without limit [−]
Mean patch size MPS Composition MPS > 0, without limit [ha]
Mean shape index MSI Structure MSI > 1, without limit [−]
Perimeter-to-area ratio PARA Structure PARA > 1, without limit [−]
Euclidian nearest-neighbor distance ENN Configuration ENN > 0, without limit [m]

Fig. 2. Crop type map produced from image classification.
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in Table 1. The spatial distribution and area of 
crops are respectively given in Figure 2 and Table 
3. Wheat, with an area of about 21,800 ha, occupied 
the largest agricultural land area (approximately 
62%) while the smallest land area was devoted to 
vegetables (2816 ha – 8% of the agricultural land-
scape). Kappa Coefficient and Overall Accuracy 
were respectively estimated to be 82.84% and 
87.41% reflecting the acceptable accuracy of the 
crop type classification. The errors of omission 

and commission were relatively higher for alfal-
fa (above 15%) indicating that alfalfa is the most 
difficult crop type to identify and classify. This is 
largely due to the periodic harvest of alfalfa ex-
hibiting a significant variation in its reflectivity. 
The accuracy statistics calculated from the confu-
sion matrix are given in Tables 2 and 3.

The results of quantifying the structure and 
spatial pattern of fields allocated to each crop type 
are given in Figure 3. According to the results, the 

Table 3. The area of crops and the results of accuracy assessment.

Crop type
Area] Number of reference 

polygons Omission error Commission error

[ha] [−] [%]
Wheat 21,803 214 6.59 14.01
Alfalfa 4892 137 17.02 15.59
Fruit tree 5561 162 8.43 9.87
Vegetable 2816 99 7.36 11.11

Kappa Coefficient = 82.84% Overall Accuracy = 87.41%
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landscape is composed of over 35,500 fields. The 
largest number of fields, over 16,500, was allocat-
ed to wheat cultivation (approximately 46% of 
the total fields) and vegetables, as the least select-
ed crop type, occupied nearly 2600 fields (<8% of 
the total fields). The results of MPS showed that 
fruit tree fields have the largest mean size (MPS 
of 1.44 ha) while alfalfa was cultivated in very 
small fields (MPS of 0.39 ha). The results of spa-
tial structural metrics (MSI and PARA) showed 
that, on average, the landscape is built by simply 
shaped fields where the largest MSI and PARA 
values, belonging to the fruit tree class (1.18 and 
0.81 respectively), were quite low. The results of 
ENN showed that wheat is cultivated in adjacent 
fields (ENN of 2.12 m) and alfalfa and vegetable 
fields are located at a far mean distance from each 
other (ENN of >20 m).

Generally, the results of metrics analysis 
showed that the pattern of agricultural appear-
ance in the study area was a large NPs of wheat 
and alfalfa. Wheat patches had a larger area and 
were located close to each other, while the patch-
es of Alfalfa fields had a small area and were 
far from each other, indicating their dispersion 
across the landscape.

Discussion

Principally, in this study, multi-temporal im-
ages of Landsat satellite (8) were used to identify 
agricultural products, especially two important 
crops, i.e. wheat, and alfalfa. Due to the successful 
results of the developed method, it can be used for 
the zayandeh Rud watershed, and also the central 
regions of Iran, where main crops are wheat, bar-
ley, and alfalfa. Also, this method can be used to 
identify and map cultivation patterns in different 
regions of the world. It can be performed using 
multi-temporal satellite images, considering phe-
nology of different vegetation types, and using 
spectral information and geometric features such 
as shape, compaction, and information obtained 
from field surveys. Using multi-temporal imag-
es is one way to reduce uncertainty in this area. 
Because by increasing time period, the probabil-
ity that two different, adjacent agricultural lands 
show different reflections increases.

The results of this research in identifying the 
type of crop show the dominance of wheat crop 

over other crops, which can indicate the move-
ment of the land landscape towards the mono-
culture pattern, which is one of the factors threat-
ening the environment. (Asgarian et al. 2016, 
Chen et al. 2016). The most common cause of 
this condition is the significant decrease of fresh-
water supplies in this region imposing farmers 
to rely on crops with fewer water requirements 
such as wheat. Direct water withdrawals from 
the zayandeh-Rood River, especially in western 
parts, have left the minimum possible amount 
of water for agricultural activities in the eastern 
parts and, as shown in Figure 2, monoculture is 
more intensified in this area.

As previously mentioned, the agricultural 
landscape has been highly fragmented due to the 
direct effect of freshwater shortage. Such a spatial 
pattern, however, was of great help to accurately 
disentangle agricultural fields from their neigh-
bors using the segmentation algorithm. It should 
be noted that fields devoted to similar crops tend 
to represent different spectral behaviors since 
crop production in this region is not mechanised 
and farmers conduct their own farming practices 
in which crops are managed to grow under var-
ious planting and harvest dates and irrigation 
frequencies. Furthermore, due to various combi-
nations of trees or vegetables, each fruit tree or 
vegetable field has also its own unique spectral 
signature different from other fields classified 
in a certain class, and in turn, such diversity of 
spectral behavior has substantially allowed the 
segmentation algorithm to properly identify ag-
ricultural fields across the region.

Integration of the segmentation algorithm with 
an innovative NDVI-based decision tree classifier 
formed a basis to better recognise the type of crop 
grown in each field. The results of the accuracy 
assessment also confirmed the performance of 
the proposed multi-temporal object-based clas-
sification procedure used in this research. This 
procedure was more beneficial for the classifica-
tion of alfalfa. At any time, alfalfa may exist in 
its various growth stages from harvested to well 
grown and such a variation pattern is a technical 
problem to appropriately classify alfalfa from a 
single image. Previous research such as Khan et 
al. (2010) and Foerster et al. (2012) have also indi-
cated that temporal spectral profiles could result 
in better identification and classification of crop 
types across agricultural landscapes especially in 
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large areas where a specific crop is grown under 
various practices.

To our knowledge, this study is the first at-
tempt of producing data about the structure and 
spatial pattern of agricultural fields in central 
Iran. Based on the results, this region is com-
posed of a large number of agricultural fields 
with a mean area of nearly 1 ha which, in com-
parison to other regions, could be ranked as high 
acreage fields found in Iran (Asgarian et al. 2016). 
The relatively long distance between agricultural 
fields (on average over 13 m) denotes a massive 
agricultural land abandonment. A large share of 
such fragmented landscape is due to the signifi-
cant decrease of freshwater supplies and it is little 
related to the natural and human-made barriers 
such as zayandeh-Rood River, roads and human 
settlements. The very low values obtained for 
PARA and MSI are due to the regular geomet-
ric shape of agricultural fields in this region. As 
Turner et al. (2015) depicted, the farmers’ incli-
nation to grow crops in bigger fields with more 
regular shapes are an effective way of optimising 
water use efficiency in areas experiencing signifi-
cant water shortage.

One of the most notable results of this re-
search is the very small mean size of alfalfa fields. 
One possible explanation for this may be due to 
the cultivation of alfalfa mostly for meeting small 
scale livestock purposes, not for economic rea-
sons and accordingly, farmers select small fields 
to cultivate alfalfa. The longer distance between 
alfalfa fields could be also due to the dispersed 
distribution of livestock units across the region. 
Fruit tree fields were mostly located in the west-
ern parts, at a mean distance of <9 m from each 
other, where agricultural lands are less faced 
with water shortage and are more expensive 
due to adjacency to Isfahan city while vegetables 
were more sporadically cultivated and showed a 
mean distance of >20 m from each other.

Providing information on the composition of 
agricultural lands and the type of cultivation of 
each farm provides very important information 
for the management and planning of agricultural 
lands to decision-makers. Different experienc-
es in the field of satellite image processing have 
shown that relying solely on a specific algorithm 
prevents the researcher from using the appro-
priate algorithm at the right time to achieve the 
desired goal (Lillesand et al. 2015). Therefore, 

to obtain accurate information about agricultur-
al lands, the present study emphasised utilising 
both methods (object-oriented and pixel-based) 
for data extraction and interpretation. The sug-
gested procedure then can be used for different 
times and locations by considering these two im-
portant approaches.

Conclusion

Integration of the results of a segmentation 
algorithm with a temporal NDVI-based decision 
algorithm led to better identification of agricul-
tural fields and crop types. Furthermore, the ap-
plication of landscape metrics has provided fur-
ther information about the spatial structure and 
spatial pattern of agricultural fields devoted to 
each crop type. Based on the results, agricultural 
lands in central Iran are experiencing a massive 
shift towards wheat monoculture, especially in 
eastern parts where agricultural activities suffer 
from the unavailability of water. The results of 
this research effort and other similar studies, in 
this case, are of great help to develop more effec-
tive and strong land use plans and policies. It is 
also recommended to carry out further research 
relying on high spatial resolution imagery data 
and a broader range of landscape metric to pro-
vide more accurate data for proper agricultural 
land use management.
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