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ABStrAct: This research aims to compare precipitation data derived from satellite observation and ground measure-
ments through a dense station network over Central Java, Indonesia. A precipitation estimate from the Tropical Rain-
fall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Version 7 are compared with 
precipitation data from interpolated rain gauge stations. Correlation analysis, mean bias error (MBE), and root mean 
square error (RMSE) were utilized in the analysis for each thee-monthly seasonal statistics. The result shows that the 
3B42 products often estimate lower rainfall than observed from weather stations in the peak of the rainy season (DJF). 
Further, it is revealed that the 3B42 product are less robust in estimating rainfall at high elevation, especially when 
humid environment, which is typical during the rainy season peak, are involved.
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Introduction

The atmospheric processes above the 
Indonesian maritime continent are consid-
ered very complex (Schott and McCreary 2001, 
Salahuddin and Curtis 2011, Hashiguchi et al. 
2013). This condition is generated from various 
processes ranging from short intra-annual and in-
ter-annual circulation, such as El-Nino Southern 
Oscillation (ENSO), Madden Julian Oscillation 
(MJO), and Dipole Mode (Ropelewski and Halpert 
1987, Saji et al. 1999, Morita et al. 2006). A specif-
ic annual precipitation pattern occurs in this area, 
where very distinct monthly cumulative precipi-
tation can be found between the dry season and 
the wet (rainy) season (Aldrian and Susanto 2003). 
The dry season is often associated with a period 
(consists of several months) with no/very small 
amount of monthly precipitation. In contrast, 

precipitation is very high in the wet season, with 
accumulated monthly precipitation reaches up to 
400 mm per month (Aldrian and Susanto 2003). 
Precipitation driving hazards, such as floods 
and landslides, are often occurred in the entire 
Indonesian maritime continent (WMO 2002, 2004, 
2010). The hazards are often associated with heavy 
precipitation in the rainy season and drought at 
dry season (Naylor et al. 2001). Crucial issues re-
lated to hazards are emerging due to the predicted 
impact of climate change towards the region. It is 
believed the hazards frequencies and magnitudes 
are increasing due to higher extreme events gener-
ated by the climate change (Naylor 2007).

Efforts in monitoring precipitation in the 
study area is important due to the linkages be-
tween climate, hazards, and potential impacts of 
the climate change (Naylor 2007). Unfortunately, 
the distribution of rain gauge networks is often 
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not uniform due to complex terrains, which in 
turn produces obstacles to the monitoring efforts 
(Liu and Zipser 2014). Rainfall data obtained from 
rain gauges/weather stations ideally produce an 
accurate measurement from point coordinates. 
However, it is often found that rain gauges spa-
tial distribution is very dense in flat-lowland are-
as but sparse in mountainous areas, such as in the 
Global Precipitation Climatology Centre (GPCC) 
dataset (Schneider et al. 2008). Uneven distribu-
tion of the weather stations potentially produces 
a large bias in precipitation interpolation (Yatagai 
et al. 2012). Moreover, due to orographic factors 
in the study area, precipitation variability in the 
mountainous areas is considered higher than the 
lowlands (Mair and Fares 2010).

Measuring precipitation in the mountainous 
regions is important due to the role of mountains 
as an upper area of the watershed. Precipitation 
occurred in this area has a very significant contri-
bution to groundwater and surface water systems, 
which are very important in the hydrological cycle 
(Collischonn et al. 2008, Chen et al. 2011). Since the 
1960s, there are emerging techniques in the utili-
zation of satellite technologies to estimate precip-
itation (Michaelides et al. 2009). Satellite data can 
provide important information due to its ability to 
measure precipitation on a regular basis. Further, 
satellite precipitation data have several advan-
tages compared to ground-based measurements. 
It can measure precipitation on the earth surface 
uniformly. Thus, it can overcome various physical 
barriers which are often found from the ground 
measurements, for example, due to topographical 
obstacles (Liu and Zipser 2014). The low latency 
of satellite precipitation data provide ability in 
supporting real-time monitoring, which is often 
lacked by the ground observations (Kuligowski et 
al. 2013). Broad ranges of utilization of satellite pre-
cipitation estimate now exist at global and region-
al scales, for example in identifying land-ocean-at-
mosphere interaction, climate variability analysis, 
and as an input in hydrological cycle and the early 
warning system (Morita et al. 2006, Mair and Fares 
2010, Chen et al. 2011, Kuligowski et al. 2013).

Several satellite precipitation estimates with 
a very high spatial resolution now exist. One 
of the examples provided by Tropical Rainfall 
Measuring Mission (TRMM) satellite obser-
vation. The main objective of this project is to 
measure the precipitation in the tropics and 

its variation based on the radar satellite data. 
TRMM is equipped with five sensors in measur-
ing the precipitation in the tropics (kummerow 
et al. 1998, JAXA 2005). Although precipitation 
data derived from satellite estimates have high-
er advantages in measuring precipitation than 
weather station networks, there are some varia-
tion about the quality of the TRMM precipitation 
estimation.

Various comparisons have been conducted for 
the TRMM datasets surrounding the study area, es-
pecially for the for the Multisatellite Precipitation 
Analysis (TMPA) products. Comparison of the 
TMPA estimates with rain-gauges over Bali has 
been conducted by As-Syakur et al. (2011), indi-
cates that TMPA estimation often underestimate 
rainfall compared to weather station observa-
tion. Prasetia et al. (2013) compare the TMPA-
rain gauge biases as function of different climate 
zones over Indonesia. The result shows that 
there are variation in the biases as the effect of 
different climatological condition. Comparison 
of TMPA data with weather station over Celebes 
Islands conducted by Giarno et al. (2018) shows 
that there are possible effect of mountainous area 
towards the rainfall underestimation in TMPA. 
Comparison with other satellite precipitation es-
timation conducted by Vernimmen et al. (2012), 
particularly for the Climate Prediction Center 
(CPC) MORPHing technique (CMORPH) and the 
Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks 
(PERSIANN) shows that all of the satellite pre-
cipitation datasets tend to estimate lower rainfall 
than observed from rain-gauges. However, there 
are several location in Indonesia where the TMPA 
estimate higher rainfall. However, compared to 
rainfall estimation using reanalysis datasets in-
dicates that satellite estimation performs better, 
especially during westerlies monsoon over South 
East Asia (Peña-Arancibia et al. 2013). From the 
above results, it can be concluded from the above 
researches that the product quality varied among 
regions. Various variables can be involved in the 
estimation biases, including climatological prop-
erties and elevation.

From the previous researches, it is also known 
that over Indonesian monsoonal region, the 
quality of precipitation estimation is higher than 
the other climate regions (Prasetia et al. 2012). 
However, a more detailed comparison is required, 
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for example, by taking the effect of topography as 
the function of biases. This paper is intended to 
compare precipitation data determined by TRMM 
3B421 product with a dense weather station net-
works across Central Java-Indonesia. The main 
objective of this paper is to measure the capabil-
ity of the satellite product, especially related to 
large biases and stochastic errors, compared to the 
ground observation. By identifying the where the 
large biases occur, we could learn what aspect that 
could contribute to the differences between the 
two datasets. The more detailed analysis in this 
research is given in this research by focusing the 
biases characteristics as function of topographical 
condition. This is because the study area consists 
of complex topographical condition from lowland 
to mountainous area with high elevation.

Study area

The research is conducted in Central Java 
Region, as a part of Indonesian maritime 

1 Explanation of the 3B42 can be found on the webb 
page: https://pmm.nasa.gov/data-access/down-
loads/trmm.

continent. In general, the Maritime Continent is 
located over the South East Asian tropics, where 
more than two-thirds of the area consists of the 
ocean (Aerts et al. 2009). There are five large is-
lands over the area, namely Sumatra, Borneo, 
Java, Celebes, and Papua Islands. This archipel-
ago has three different climate regions (Aldrian 
and Susanto 2003), including monsoonal type, 
semi-monsoonal type, and anti-monsoonal type 
(Fig. 1). The monsoonal region is highly influ-
enced by a monsoonal circulation, consisting of 
the northwest monsoon (in October–March) and 
the southeast monsoon (in April–September). 
large amount of moistures during the northwest 
monsoon produce heavy precipitation in the wet 
season (Qian 2008). Therefore, a single rain peak 
is found around December to February. A differ-
ent condition can be found in the semi-monsoon-
al region since it has two peaks or rainfall. Those 
two peaks (occurred in October–November and 
March–May), are influenced by the northward 
and southward movement of the Inter-tropical 
Convergence Zone (ITCZ). The anti-monsoon-
al region has a reversed characteristic with the 
monsoonal region. In this area, a peak of precip-
itation often occurs in April to September. It is 
possible that the annual rainfall pattern in this 

Fig. 1. Three different major climate zones in Indonesia based on Aldrian and Susanto (2013). Precipitation data 
were derived from TRMM 3B42.
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region is associated with the Indonesian Ocean 
Through flow which moves across small islands 
in the eastern part (Aldrian and Susanto 2003). It 
is also highly possibly that the maximum month-
ly rainfall in this region are closely related to 
distribution of maximum convective when ITCZ 
passes this region (Chang et al. 2005). Moreover, 
precipitation in this region are known to be high-
ly enhanced by El-Nino Modoki during JJA (As-
Syakur et al. 2016)

The Central Java Region is located at the cen-
tral part of Java Island, 108–111° E and 7–8.5° S. 
This area is characterized by monsoonal climate 
region. The peak of the wet season occurred in 
December to February (DJF) (Fig. 2). The figure 
also shows that the monthly precipitation during 
this season reaches up to 400 mm per month. In 
the dry season, a very distinct condition can be 
found, in which very small amount of precipi-
tation occurred. Based on the obtained weather 
station data, no precipitation is often received 
by the area In June–August (JJA). This is likely 
due to changing the direction of the monsoonal 

wind (Fig. 2). Precipitation is increasing at the 
mountainous areas in the central part of the is-
land. The maximum elevation of the mountain-
ous area in the central part reaches about 3000 m 
in height. The Northern and Southern part of the 
study area are characterized by lowland-flat area 
with elevation less than 500 m. The mountainous 
area is known to trigger an orographic process 
that forces moist air masses to be condensed 
and converted to rainwater (Qian 2008). Based 
on the weather station data, the annual precip-
itation in the mountainous area reached up to 
2,700 mm a–1, while in the lowland area (at north 
and south part of the island), the annual precipi-
tation is about 1,500–2,000 mm a–1.

Research methodology

Datasets

Monthly rainfall dataset obtained from some 
weather stations over Central Java, recorded by the 

Fig. 2. TRMM 3B42 composite seasonal rainfall and the corresponding NCEP reanalysis horizontal wind 
vectors from 1998–2010.
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Indonesian Bureau of Meteorology, Climatology, 
and Geophysics (BMkG) is used as a reference 
to validate the satellite precipitation data. The 
data cover a period between 1998 and 2010. The 
weather stations are sparsely distributed in the 
research area. Several areas have weather sta-
tions that are densely distributed, while in other 
areas, there are less/no stations (Fig. 3). This is 
especially related to the topographical condition. 
A high density of the network is found in the 
north and the south part of the island. A lower 
weather station density is found in the central 
part, which is mostly mountainous region. 60 
stations are located in the lowland area with el-
evation less than 500 m. 12 stations are located 
at the elevation between 500–1,000 m, and only 
one station is located at the area with an elevation 
higher than 1,000 m (Table 1). Data pre-process-
ing has been implemented to ensure the quality 
of ground observation data, including missing 
data identification, correlation checking, and 
consistency checking.

There are three main rain estimation prod-
uct in TRMM, which are based on TRMM 
Precipitation Radar (PR2A25), TRMM Microwave 
Imager (TMI2A12), and the TRMM Multisatellite 
Precipitation Analysis (TMPA 3B42/3B43) 

(Kummerow et al. 1998). In this research, the 
satellite precipitation data is obtained from 3B42 
observations by the Japan Aerospace Exploration 
Agency (JAXA) earth observation centre and 
National Aeronautics and Space Administration 
(NASA) Goddard Space Flight Center (GSFC) 
precipitation processing system (Huffman et al. 
2007). The TRMM rainfall product used in this re-
search were TRMM 3B42 Version 7. TRMM 3B42 
is space-time average of some passive microwave 
and infrared based products that are averaged to 
0.25° × 0.25° grid (±28 km2). This product has 3 
hourly temporal resolution, in which each data 
contains averaged rain rates during the period of 
recording (in mm h–1). The 3B42 rain estimations 
are based on:
1. Level 1 TRMM TMI Brightness Temperature 

(Tb) (2A12),
2. Level 2 PR–TMI combined rain profile (2B31),
3. NSIDC level 2 AMSR-E precipitation,
4. NOAA/NCDC M-CLASS SSMIS Tb,
5. NOAA/NCDC CLASS SSMIS antenna tem-

perature,
6. NESDIS Microwave Surface and Precipitation 

Products System (MSPPS) level 2 AMSU-B 
precipitation,

7. NESDIS MSPPS operational level 2 Micro-
wave Humidity Sounder (MHS) precipitation,

8. NOAA/NCDC level 3 Gridded Satellite 
(GridSat-B1) IR Tb,

9. NOAA/NWS/CPC merged 4-km geostation-
ary satellite IR Tb. The 3B42 final product is 
later obtained by further calibrating the data 
with GPCC level 3 precipitation gauge anal-
ysis on a monthly basis (Huffman and Bolvin 
2013).

Fig. 3. Fig. 3. Rain gauge stations used for the analysis, represented as red triangle. Shading color represent 
elevation. (Precipitation data are from BMKG; elevation data are based on ETOPO).

Table 1. Number of weather stations based on the 
elevation.

Elevation (m a.s.l.) Number of stations
0–2500, 51

250–5000, 9
500–7500, 9
500–1,000 3

>1,000 1
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Although monthly precipitation data are also 
provided by the TRMM 3B43 product, the 3B42 
product is considered more applicable for the fu-
ture analysis purpose, especially in identifying 
the source of biases in the input datasets. This is 
because the biases in the 3B42 can be originated 
mostly from passive microwave or infrared da-
tasets as the input algorithm. For example, the 
high frequency channels in passive microwave 
sensors are known to be sensitive to ice particles 
(Sekaranom and Masunaga 2017), while the low 
frequency channels are known to be sensitive 
to cloud and liquid water path (Masunaga et al. 
2005). On the other hand, satellite infrared sen-
sors are known to be sensitive to cirrus clouds 
(Heidinger et al. 2010). Comparison of different 
satellite retrieval variables obtained from differ-
ent sensors or by using product intercomparison, 
could be utilized to reveal the source of biases 
(Sekaranom and Masunaga 2017). However, to 
conduct such a comparison, data series that close 
to instantaneous satellite retrieval are required 
rather than the monthly dataset.

To produce monthly precipitation, daily pre-
cipitation were calculated and then were accu-
mulated in monthly basis. To convert daily pre-
cipitation from 3 hourly rainfall rates, a single 
dataset of mean rain rate (in mm h–1) are multi-
plied by the temporal resolution (3 hour). Eight 
rain rate values from the raw dataset collected in 
daily basis were then summed together to pro-
duce daily rainfall (in mm d–1), and then summed 
again based on the month. Hereafter, the month-
ly weather station precipitation data were com-
pared with monthly rain accumulated satellite 
data.

Data Pre-Processing

Comparison of TRMM precipitation data with 
rain gauge stations must follow several require-
ments to be fulfilled. The processes for example 
are data quality checking and outlier identifica-
tion. Quality of rain gauge data in the research 
area often distorted due to the abundance of miss-
ing data. This is especially related to rain gauge 
instruments that are broken for several months, 
in which no recording can be made during that 
period. These missing values (in daily basis) were 
not replaced by certain techniques, for example 
by interpolating to the nearest stations. Simply 

explained, months with missing data were omit-
ted and were not considered for the comparison. 
Data obtained from rain gauge stations also must 
have good quality to be interpolated. Outliers 
from the rain gauge data possibly generated from 
various source. For example due to rain gauge 
stations that not properly placed, inaccuracy of 
rain gauge instruments, or data that not properly 
recorded. Outliers also could be possibly gener-
ated by intense rainfall within small area espe-
cially in mountains. The existence of outliers can 
produce low correlation of precipitation between 
rain gauge stations and also inconsistency of the 
records over time.

To remove stations which possibly contain 
an excessive number of outliers, two procedures 
were implemented. Correlation-distance analysis 
and consistency analysis were utilized to remove 
these stations. Monthly correlation from a single 
station was examined from three nearest stations. 
This process repeatedly held to all of the 70 rain 
gauge stations in the study area. The correlation 
values were then compared with the distance rel-
ative to each other and then plotted into a graph. 
This correlation-distance concept are originated 
from a condition that two rain-gauges located at 
a near distance will tend to capture similar pre-
cipitation systems than farther location, so the 
correlation will be higher for the closer stations 
(Asquith and Famiglietti 2000). The result of the 
correlation-distance analysis is shown in Figure 
4. The x-axis represents the distance (in km), and 
Y-axis represents the correlation. Stations with 
low correlation but has close distance can be 
identified from this graph, which then removed. 
Stations that are omitted from the correlation-dis-
tance analysis are shown by red color.

Fig. 4. Correlation-distance plot between weather 
stations with deleted station in cross red marks.
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The precipitation data for each monthly time 
step are then compared to measure its consisten-
cy. This process employed the same stations from 
the correlation-distance analysis. In this analysis, 
monthly precipitation from examined weather 
stations are accumulated from the initial time 
step to the last time step, and compared to the 
three nearest stations. In general, the consisten-
cy are best compared with many station data as 
much as possible. However, large distance be-
tween stations could also possibly producing the 
biases. Three stations are selected since it often 

produce good result since the distance is not quite 
far. A linear plot indicates good consistency since 
the measurement is in line with the other sta-
tions. When a line break is detected, it shows low 
consistency which indicate a deviation between 
the examined station with the other station. This 
break indicates low consistency and are possibly 
generated by broken sensors or inaccuracy in the 
measurement. Figure 5 shows an example of sta-
tion with good and low consistency. The station 
with good consistency shows a linear line from 
the initial to the end of observation, while the 

Fig. 5. a) An example of station with good consistency taken from Dracik Kramat Station, b) station with low 
consistency taken from Ngawen Station.

Fig. 6. Number of weather stations within each TRMM 0.25 sq. degree grid.
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station with low consitency shows a line break. 
The weather station with this line break are re-
moved from the analysis.

From 70 rain gauge stations data that are ob-
tained in the research area, 12 stations were omit-
ted due to low correlation or low consistency. 
Therefore, 58 rain gauge stations were utilized for 
the validation. The spatial distribution of these 
stations, as well as the omitted one, is shown in 
Figure 6a. There is a cluster of stations with low 
data quality over the Southwest of the study area. 
This area is a lowland so the precipitation will be 
more homogeneous. Therefore the main source 
of the low quality data, as taken from the weather 
station documentations, is possibly due to mas-
sive replacement of rain-gauge sensors over this 
area. To illustrate the station distribution inside 
TRMM grid, the TRMM grid is then superim-
posed above these stations to count the number 
of rain gauge stations inside each grid. From this 
process, about 1 to 4 rain gauge stations were 
accounted for each TRMM grid (Fig. 6b). This 
process was conducted to ensure that there is 
at least one rain gauge station to represent each 
TRMM grid. Thus, the grids which have no sta-
tion representation were not accounted for the 
comparison.

Interpolation Methods

Comparison of weather station data with the 
gridded satellite data remain challenging due 
to different nature of both data, where weath-
er station measures point rainfall, and satellites 
measure area averaged rainfall (areal rainfall). 
The comparison can be done directly by assum-
ing that the precipitation is equal within the 
area inside each TRMM grid, and considered 
as a point to point analysis. Unfortunately, this 
method can produce a large bias due to the high 
variance of precipitation inside one single grid 
(Asquith and Famiglietti 2000). As a result, ob-
servation from the point of measurement often 

overestimates the areal rainfall, and therefore 
an areal reduction factor must be implemented 
(Asquith and Famiglietti 2000). Another way to 
compare the data is based on a grid to grid com-
parison, as proposed in this research. The proce-
dure consists of a precipitation transformation 
from observed points to gridded (areal) data, 
which then compared with the TRMM grids. 
The transformation was conducted by interpo-
lating unevenly distributed ground precipita-
tion measurement to the uniform TRMM refer-
enced grid. Several interpolation methods were 
examined, namely
a) Moving Average,
b) Spline,
c) IDW,
d) kriging,
e) Nearest Neighbour,
f) Natural Neighbour.

In this research, a similar search radius of 0.5° 
is utilized for all of the interpolation. This search 
radius represent two times of the TRMM reso-
lution and to ensure that sufficient station data 
are utilized for the interpolation. Since there are 
various parameters in the interpolation that gives 
influence to the interpolated value, the other in-
terpolation parameters are set to default.

Selection of proper interpolation method is 
important to represent an area-averaged rain-
fall that matches the real condition. Improper 
interpolation methods might produce underes-
timate/overestimate results and also might pro-
duce a large bias in the data validation process. 
In this research, the quality of interpolated data 
was assessed by comparing interpolated and the 
observed rainfall in each station when the exam-
ined station is removed for interpolation. The 
comparison of interpolated statistics are then pre-
sented using 1:1 plot, correlation analysis, Mean 
Bias Error (MBE) and Root Mean Square Error 
(RMSE). The result of 1:1 plot value is shown 
in Figure 7, while the correlation, MBE, and 
RMSE are presented in Table 2. The interpolation 

Table 2. Correlation value, Mean Bias Error (MBE), and Root Mean Square Error (RMSE) for several 
interpolation method.

Parameter
Interpolation

Moving Average Spline IDW kriging Nearest Neighbour Natural Neighbour
Correlation 0.93 0.91 0.92 0.84 0.92 0.91
MBE 1.15 –10.61 8.01 2.18 1.02 4.21
RMSE 81.51 88.17 83.37 118.94 89.82 92.06



 COMPARSION OF TRMM PRECIPITATION SATELLITE DATA OVER CENTRAL JAVA REGION – INDONESIA 105

techniques produces different results. In gener-
al, there are no large differences allo of the ex-
amined parameters. The correlation ranges from 
0.91 to 0.93, which are all statistically significant 
at p-value <0.05, the bias ranges from –10 to 8.01 
mm per month, while the RMSE ranges from 
81.51 to 118.94 mm per month. The moving aver-
age interpolation is selected in this research since 
it has the highest correlation value and lowest 
RMSE value. Since it might be not sufficient to 
determine the best interpolation using the above 

parameters only, a direct comparison of TRMM 
grid with weather stations (non-interpolated) is 
also conducted to shows that the interpolated re-
sult remains objective.

Statistical Comparison

Several statistical measures were imple-
mented to analyse the relationship between 
the TRMM data with rainfall estimated us-
ing the rain gauge data. The linear correlation 

Fig. 7. Selection of interpolation techniques, a) Moving Average, b) Spline, c) IDW, d) Kriging, e) Nearest 
Neighbour, and f) Natural Neighbour.
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coefficient, mean bias error (MBE), and root 
mean square error (RMSE) were selected in this 
analysis (Feidas 2010). The equations are de-
fined in equations 1–3:

  
(1)

  (2)

  (3)

where:
 – Si denotes the estimated TRMM 3B42 value,
 – Gi denotes the reference gauge value,
 – δS and δG denote standard deviation for esti-

mated and reference values respectively,
 – n is the number of paired data.

The selection of statistical measures is based 
on advantages and disadvantages of each meth-
od. The correlation analysis can identify the 
similarity of rainfall patterns from TRMM 3B42. 
Highly positive correlation represents the sim-
ilarity in the pattern. MBE could measure the 
tendency, which can be positive or negative. A 
positive value means that satellite estimates often 
overestimate the precipitation regarding rainfall 
estimated from rain gauges as a reference and 
vice versa for the negative value. RMSE was used 
to find the absolute average error value between 
the reference data and the satellite data. To eval-
uate the reliability of the product on the monthly 
basis, both of the statistical errors analysis (MBE 
and RMSE) are expressed in mm per month dif-
ferences. This analysis was conducted from 1998 
to 2010 where the weather station precipitation 
data are available.

To measure seasonal difference within a 
year, comparison for the distinct season was 
also conducted. The seasons were grouped into 
December–February (DJF), March–May (MAM), 
June–August (JJA), and September–November 
(SON). This seasonal analysis was intended to 
identify the influence of monsoon cycle. The 
DJF represents the peak of the rainy season in 
the study area, while JJA represents the peak of 
the dry season. Transitions of the rainy season 
to the dry season and from the dry season to the 
rainy season is represented by MAM and SON 
respectively.

Results

Spatial pattern of Correlation, MBE, and 
RMSE

Result of the correlation analysis, MBE, and 
RMSE for each station with TRMM data (non-in-
terpolated) are shown in Figure 8. In general, the 
correlation ranges between 0.62 to 0.88. Correlation 
values at the west part are slightly higher com-
pared to the east, although no clear patterns are 
found in the north-south direction. Comparison of 
the MBE ranges from –81 to 203 mm per month 
(–40% to 45%). As similar to the correlation, there 
are no specific pattern of the biases are observed, 
however, over central part of the study area, which 

Fig. 8. a) Correlation value, b) Mean Bias Error (MBE), 
and c) Root Mean Square Error (RMSE) of monthly 

precipitation between each weather stations and 
TRMM 3B42.
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are mountainous regions, the TRMM tends to un-
derestimate precipitation from several weather 
stations. Comparison of the RMSE shows that the 
error ranges from 85 to 265 mm per month (38% to 
94%). It also appears that station with high biases 
at the central part also have higher RMSE.

Result of the correlation analysis, MBE, and 
RMSE for the interpolated data are shown in 

Figure 9. Overall, the interpolated product shows 
higher correlation compared to the station data, 
while the MBE and RMSE become lower. Figure 
9a shows a correlation between TRMM and in-
terpolated gauge data in the entire research area. 
The correlation values range from 0.77–0.91. The 
result of MBE (Fig. 9b) also reveals that no specific 
tendencies are found in the entire research area, 
as similar to the station data plot. At several parts, 
positive MBE values are identified, while nega-
tive MBE values also can be observed at the other 
parts. It could be observed that average monthly 
bias ranges from –68 to 71 mm per month (–36% 
to 17%). The biases tend to be negative over the 
central part, while positive over the west and east 
parts. Thus, it can be concluded that the TRMM 
estimation is more likely underestimate or over-
estimate data more locally in term of east, central, 
and west part of the study area. Monthly absolute 
precipitation differences, measured using RMSE 
(Fig. 9c), have a lower range than the non-inter-
polated data, which is about 62 to 162 mm per 
month (31% to 56%). These values indicate that al-
though interpolation has been implemented, the 
large difference between the ground observation 
and the satellite estimate. From the spatial distri-
bution of RMSE, it can be seen that the differences 
are higher at the central part. However, up until 
this point, no clear indication that the topographi-
cal factor gives an influence to this difference.

Seasonal difference of correlation, MBE, and 
RMSE

To initially characterize the seasonal differ-
ence, the comparison of monthly precipitation 
from rain gauge-TRMM for all temporal records 
is shown in Figure 10. The figure represents are-
al averaged precipitation from both of the data. 
Only TRMM grids with at least one rain gauge 
station were averaged. A similar precipitation 
pattern between ground observation and TRMM 
can be observed from this figure. It can be iden-
tified that precipitation in the dry season is quite 
similar to both of the data. However, the precip-
itation difference in the rainy season reached up 
to 150 mm per month lower than observed from 
the rain gauges. From the average of the research 
area, it is also shown in the figure that satellite es-
timates in rainy season often underestimates the 
precipitation.

Fig. 9. a) Correlation value, b) Mean Bias Error (MBE), 
and c) Root Mean Square Error (RMSE) of monthly 

precipitation between weather stations (interpolated 
using Moving Average) and TRMM 3B42.
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To further investigating the seasonal differ-
ences, the seasonal variation of correlation, MBE, 
and RMSE are shown in Table 3. The correlation 
between the two data is highest JJA (0.82), and 
lowest in DJF (0.54). High correlation also found 
in SON, but lower in MAM (0.81 and 0.68 respec-
tively). It means that the correlation are high in 
the dry season and the transition from the dry 
season to the rainy season. Correlation are lower 
in the peak of the rainy season and the transition 
between the rainy season to the dry season. The 
lowest MBE value is found in JJA. In this sea-
son, the satellite estimates are quite match with 
ground observation data. However, MBE values 
for other seasons are negative. It can be conclud-
ed that the satellite data often underestimate 
precipitation data from the weather stations. 
The highest difference of MBE value is found in 
DJF, which is the peak of the rainy season. The 
average difference reaches 44 mm per month 
or about 12.29%. Although the correlation and 

the MBE in JJA are also the lowest, The RMSE 
percentage value is the highest (64.25%). This 
is especially related to the low precipitation 
amount during this period, in which a slight 
precipitation difference can produce a large dif-
ference from the average. The RMSE differences 
are quite similar in MAM and SON, which are 
about 90 mm per month (37.56%) in MAM and 
97 mm per month (54.07%) in SON. Although 
the actual errors are similar, it should be noted 
that MAM has the lowest percentages than all 
other seasons.

Correlation value, Mean Bias Error (MBE), 
and Root Mean Square Error (RMSE) as 
function of elevation

To identify the difference between the TRMM 
and weather stations over the study area, the cor-
relation, MBE, and RMSE are plotted as a func-
tion of elevation. Comparison of the non-inter-
polated data and moving average interpolated 
data are presented in this analysis. The station 
data are ranked from the lowest elevation to the 
highest elevation from left to right. For the inter-
polated data, the elevation are based on average 
elevation within each 0.25° x 0.25° grid. As an in-
itial step, comparison for all data are conducted, 
and further separated for each season to better 
understand the differences.

Fig. 10. Long term plot of precipitation from TRMM and interpolated weather station precipitation data.

Table 3. a) Correlation value, b) Mean Bias Error 
(MBE), and c) Root Mean Square Error (RMSE) for 

seasonal data.
Season Correlation MBE RMSE

DJF 0.54 –44 (–12.29%) 149 (41.54%)
MAM 0.68 –17 (–7.16%) 90 (37.56%)
JJA 0.82 0.94 (0.16%) 44 (64.25%)
SON 0.81 –16 (–9.09%) 97 (54.07%)
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Plot of the statistical properties of the 3B42 
and weather station differences as function of el-
evation is shown in Figure 11, contains a) mean 
monthly rainfall, b) correlation, c) MBE, and d) 
RMSE for all season and seasonal data. We first 
focus on the statistical result for all season. The 
plot of mean rainfall shows that there is a tenden-
cy of higher rainfall at higher elevation. There 
are also some variation of the rainfall between 
stations, which possibly comes from the effect 
of mountain shades area and differences in the 
localization of precipitation systems. The corre-
sponding correlation value indicates that most of 
the correlation are higher than the 0.6–0.7 range, 
except for several stations at the highest elevation. 
Comparison of the MBE shows that the 3B42 data 
tends to estimate lower monthly rainfall for some 
stations. The 3B42-station biases are especially 
large at station with high elevation, in which al-
most reaching 200 mm per month. Comparison of 
the RMSE also shows that higher errors are often 

achieved for the stations at high elevation. This 
is related to the higher rainfall occurred over the 
mountainous area compared to the lowland area.

Comparison of the statistics for seasonal data 
are further observed to characterize the 3B42-
station differences between seasons. It can be ob-
served from the mean monthly rainfall that the 
precipitation are highest in DJF, and reach the 
lowest in JJA as typical to monsoonal circulation. 
Comparison of the correlation values show that 
the correlation are extremely low for the peak of 
rainy season (DJF), particularly for the station 
located at highest elevation. However, compari-
son of the correlation for other seasons still show 
relatively high correlation, especially for JJA and 
SON. Comparison of the MBE shows that the sta-
tions located at high elevation also have higher 
negative bias in DJF than the station located at 
lower elevation in general. Comparison of the 
RMSE also shows that station at high elevation 
have higher errors in DJF, while lowest in JJA.

Fig. 11. a) Mean rainfall, b) correlation value, c) Mean Bias Error (MBE), and d) Root Mean Square Error 
(RMSE) for each station based on elevation rank from the lowest to the highest. Black-bold lines indicates 

average value for all season, while color lines indicate seasonal variation.



110 ANDUNG BAYU SEkARANOM ET Al.

Statistical comparison for the moving av-
erage interpolated data is shown in Figure 12. 
The result, in general shows similar pattern to 
what has been identified by the non-interpo-
lated comparison. However, we could observe 
that the differences are much clearer than the 
non-interpolated comparison. The tendency of 
increasing precipitation as function of height is 
clearly observed from the graph, particularly for 
the DJF rainfall. Comparison of the correlation 
also shows that the DJF correlation tend to de-
crease with increasing elevation. The MBE and 
RMSE differences are comparable to the non-in-
terpolated result. There are variation in the MBE 
that could be positive or negative around zero, 
except for rain grid at high elevation. The RMSE 
are also show that the error are large for DJF 
rainfall.

Discussions

From the results obtained in this research, we 
could summarize the statistical difference be-
tween the 3B42 estimates with weather station 
precipitation data that spread over the study 
area. First, it is important to note that the month-
ly precipitation are centralized at the centre part 
of the island, which are mountainous region. On 
the other hand, precipitation are lower over the 
lowland areas at the north and south part of the 
island. It is well known that the higher precipi-
tation over the central part of the study area are 
generated mainly by land-ocean diurnal interac-
tion (Qian 2008). In more detail, large instability 
occurred over land during afternoon takes up 
moisture at the surrounding ocean, which then 
condensed due to orographic uplifting at the 

Fig. 12. Similar to previous figure, but for moving average interpolated rainfall data. The plot are based on grid 
elevation rank from the lowest to the highest.
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central part (Qian 2008). It has been shown in 
this study that the 3B42 shows a weak correla-
tion between 3B42 estimates and weather station 
precipitation data. Comparison of the MBE also 
shows that 3B42 tends to estimate lower monthly 
rainfall for the mountainous area, as well as the 
high errors compared to the lowlands area.

It is also important to mention that DJF rain-
fall statistically lower compared to the other 
seasons. It has been shown that higher month-
ly rainfall in DJF are mostly sourced from hu-
mid air originated from the Indian Ocean (Fig. 
2). The humid air that transported towards the 
central part of mountainous area somehow pro-
duce rainfall that exhibit weak correlation with 
3B42 in DJF. MBE and RMSE of the DJF rainfall 
are also larger than the other seasons, especially 
over mountainous region. It is important to note 
that the DJF statistics are different compared to 
other seasons. For example, even though JJA still 
have relative large error in term of RMSE per-
centage (Table 3), but the correlation remains 
high. Therefore, the lower correlation in DJF 
might indicate that the 3B42 missed or false in 
identifying precipitation over the mountainous 
region.

To this end, it has been shown that the 3B42 
estimates often produce lower rainfall estimation 
over the mountainous region in the study area, 
especially during the peak of rainy season. It is 
therefore important to identify possible source of 
the bias from the above result. First, it is known 
that there are large variation of the mountainous 
precipitation, which are tends to be inhomoge-
neous compared to the lowland. It is therefore 
possible that the weather station data measured 
local precipitation system that occupy small are-
as compared to the 3B42 resolution. This kind of 
small system might be not well identified by the 
3B42.

Second, it is also known that estimations 
from the passive microwave sensors tend to un-
derestimate orographic rain (Shige et al. 2013). 
This can also be one important factor since 3B42 
estimation partially derived from passive mi-
crowave estimation. Over ocean, the passive 
microwave low frequency channels detect emis-
sion from liquid phase hydrometeors, while the 
high frequency channels detect scattering from 
ice particles (Kummerow et al. 1996, Masunaga 
et al. 2005). In general, the rainfall estimation 

using passive microwave sensors depends most-
ly on high frequency channels due to land sur-
face noises at lower frequency (kummerow et 
al. 2001, Gopalan et al. 2010). The high frequen-
cy channels are more sensitive to ice-particles, 
which are mostly associated with deep convec-
tive clouds (Sohn et al. 2015). Moreover, signals 
received by satellite infrared sensors are highly 
correlated with cloud top temperature (Berg et 
al. 2006), and therefore will also be more sensi-
tive to tall-deep convective clouds. However, in 
orographic precipitation, the humid air are asso-
ciated with forced upward vertical motion. Thus 
different than the general instability applied to 
deep convective clouds (Shige et al. 2013). The 
orographic rainfall therefore might be associated 
with less ice-particles rather than deep convec-
tive rainfall, so the microwave sensors estimate 
lower rainfall.

Third, it is also worth to mention that moun-
tainous precipitation possibly generated more 
likely by warm rain mechanism than cold rain 
mechanism. The cold rain mechanism are associ-
ated with large surface instability that important 
in deep convective development, while warm 
rain mechanism could occur in more stable en-
vironment, but with large amount of moisture 
(Song et al. 2017). The most important process in 
warm rain mechanism is intense collision and co-
alescence process of rain particles in very humid 
environment (Hamada et al. 2015). Therefore, 
high precipitation can occur without significant 
cloud top and ice-particles, where estimation 
using infrared sensors and high frequency mi-
crowave channels depends on those two varia-
bles (Sekaranom and Masunaga 2017). The large 
moisture supply from Indian Ocean during DJF 
in the study area possibly favourable to support 
the intense collision and coalescence in the warm 
rain development, in addition to condensation 
due to forced upward motion in the mountainous 
area. Sekaranom and Masunaga (2017) identify 
that warm rain mechanism is the most dominant 
process in the heavy rain development over land 
surface. However, the effect of topography is not 
included in their analysis. Therefore, it is still not 
clear whether warm/cold rain mechanism are 
more dominant than the another. It is therefore 
important to identify what factors that are more 
dominant in producing the biases in mountain-
ous regions in the future research.
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Summary

In this study, monthly precipitation data 
from TRMM 3B42 were compared with month-
ly weather station measurement in Central Java 
Region-Indonesia. Data from 58 rain weather 
stations, covering a 13-year period (1998–2010) 
were spatially interpolated to evaluate the sat-
ellite estimate data. long-term and seasonal 
timescales were used to analyse the differences 
between the ground observation and the satellite 
precipitation data. Correlation coefficients, MBE, 
and RMSE analysis were employed to both of the 
timeframes. Moving average interpolation was 
utilized to calculate the areal precipitation.

The comparison of the precipitation data from 
the dense weather station network in Central 
Java and TRMM 3B42 estimation indicates that 
the TRMM 3B42 often underestimate precipita-
tion data in rain season. As a result, larger bias 
and lower correlation occur in the rainy season. 
The rainy season differences, in this case, should 
be taken into account, especially since high pre-
cipitation amount in the rainy season and hydro-
meteorological hazards have a close relationship 
in the study area. The larger error in rainy season, 
therefore, gives remarks to the satellite precipita-
tion data utilization and application in develop-
ing disaster early warning system, mainly due to 
biases between satellite estimation and ground-
based measurement.

Although the TRMM 3B42 algorithm includes 
an adjustment process with ground observation 
to improve its accuracy, the result of this research 
indicates that the satellite precipitation data still 
need to be improved. It is possible that although 
the adjustment reduces the global discrepancies, 
the regional discrepancies might exist. The com-
parison with the dense weather station network 
suggests that the errors are higher in specific 
parts of the study area, particularly the moun-
tainous region. It could be inferred that despite 
the adjustment of the TRMM 3B42 precipitation 
rainfall algorithm, gaps between satellite-ground 
data observation are still exist.

It is also important to note that this research 
use TRMM 3B42 version 7 only, therefore no 
comparison for version 6 is conducted in this re-
search. However, it is known that the TMPA ver-
sion 7 algorithm perform better compared than 
the version 6 (Prakash et al. 2015). In summary, 

the version 7 algorithm use the GPCC data ver-
sion 4, while the previous version using GPCC 
version 2. The TMPA algorithm version 7 also 
use improved AMSU algorithm compared to 
older one in version 6 (Prakash et al. 2015). The 
TMPA version 7 also shows improvement in the 
TRMM combined instrument (TCI) (Liu 2016).

Although there are various improvement in 
the algorithm, the input datasets itself could con-
tribute to the bias at the estimation, especially 
due to assumption in ice-particles and cloud top 
temperature relationship with rainfall, as men-
tioned in the discussion. There are no significant 
improvement related to this issue in the input da-
tasets used by TMPA products. For example, the 
TRMM Microwave Imager (TMI) land algorithm, 
by design, estimate higher rain-rate with higher 
ice-scattering, which are not always shows linear 
relationship (Sekaranom and Masunaga 2017). 
However, there are no significant improvement 
in the TMI land algorithm between version 7 and 
version 6, so that the above linear assumption 
still exists (Zagrodik and Jiang 2016). Sekaranom 
and Masunaga (2017) shows that the 3B42 esti-
mation perform better than the TMI estimation 
over land. This is because the 3B42 algorithm also 
consider TRMM Precipitation radar (PR) data as 
input in the TCI, as well as the later adjustment 
with GPCC data. However, the 3B42 still have 
lower performance compared to the TRMM PR 
data (Sekaranom and Masunaga 2017). It is be-
cause the TRMM PR data directly measures ra-
dar reflectivity as the product of sixth moment of 
drop size distribution (DSD) (Iguchi et al. 2000), 
rather depends on ice-particles and cloud top 
temperatures, which are considered more indi-
rect (Liu and Zipser 2014). As a result, the TRMM 
PR data are better in identifying warm rain mech-
anism that occur mostly at humid environment 
(Sekaranom and Masunaga 2017).

Methods to bridge the gap between ground 
observation and satellite estimation are still re-
quired for the practical purpose, especially for 
rain-rate to surface discharge calculation. From 
this research, it is known that the orographic 
effect could produce larger bias to the 3B42 es-
timation. It is therefore important to identify 
more detail the influence of orographic factor 
towards satellite precipitation, so the bias could 
be minimized. The possible source of biases due 
to topographic factor has been discussed in this 



 COMPARSION OF TRMM PRECIPITATION SATELLITE DATA OVER CENTRAL JAVA REGION – INDONESIA 113

paper, including more localized precipitation, 
cloud vertical structures and ice microphyics that 
influence 3B42 input datasets, as well as warm 
rain mechanism. However, it is also possible 
that the biases are generated from combination 
of the three above factors, or other factors that 
are still not considered above. Characterizing of 
the above factors using a set of satellite combina-
tion (i.e. A-Train satellites (Stephens et al. 2002)) 
might be useful for understanding the process 
corresponding precipitation over mountainous 
area, and is suggested for further studies.
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